Category Archives: Uncategorized

UW ChemE Graduates Barry M. Wise and Neal B. Gallagher Celebrate 25 Years at Eigenvector Research

Jan 3, 2020

Eigenvector Research, Inc. (EVRI) was founded by UW Chemical Engineering graduates Barry M. Wise and Neal B. Gallagher on January 1, 1995 and celebrated its 25th anniversary. EVRI is largely based on data science methods in chemistry, i.e. chemometrics, that Wise researched during his graduate work under the supervision of Professors N. Lawrence Ricker and the late Bruce R. Kowalski in Chemistry. Wise developed the first version of Eigenvector’s flagship PLS_Toolbox software as part of his dissertation “Adapting Multivariate Analysis for Monitoring and Modeling Chemical Processes.” The software has evolved over the last three decades into a multi-platform suite of products for building and applying multivariate and machine learning methods for pattern recognition, calibration and classification in the process environment. It’s active user base consists of several thousand people world wide and is used in applications from chemical process control to teaching data science in universities. 

Eigenvector provides training on the use of data modeling methods, and has organized hundreds of short courses attended by thousands of students over the last 25 years. It’s annual Eigenvector University in Seattle, now in its 15th year, is a week-long event typically attended by about 50 students. EVRI also provides consulting services and has worked on a wide array of applications from medical devices to the manufacture of high tech machine parts.  

Wise and Gallagher started their graduate studies at University of Washington in Autumn 1985. They met the first day of class on September 30. An undergraduate in Chemical Engineering and Engineering Physics at University of Colorado, Gallagher completed his M.S. ChemE at UW in 1987. He went on to University of Arizona where he finished his ChemE Ph.D. in 1992. Wise obtained B.S. degrees in ChemE and Chemistry at UW in 1982 and went on to work for Pacific Northwest National Laboratories (PNNL) in Richland, WA. Returning to UW in 1985, Wise completed his M.S. ChemE in 1987 under Professor Harold Hager and his Ph.D. in 1991. 

The two senior members of EVRI’s software development team also have ties to UW: R. Scott Koch graduated with his B.A. in Chemistry in 1995 and Donal O’Sullivan obtained his Ph.D. in Atmospheric Sciences in 1986. They have been with Eigenvector for 17 and 11 years now, respectively, and are a critical part of the Eigenvector team. 

For more background and history about Eigenvector Research please see Eigenvector Turns 25. For questions please contact Eigenvector President Barry M. Wise.

Everybody’s Welcome in the Eigenvector Sandbox

Nov 20, 2019

When I was a kid I was lucky to have a great sandbox. The fact that it was on the shores of Lake Chelan made it especially nice, but there were a lot of other things that made it great. First off, it was big enough for several kids to play in at the same time. It was well equipped: There were buckets and shovels and rakes. And Tonka trucks. And later Matchbox cars. There was a handy supply of water (the lake) and plenty of “building materials” besides sand, including clay that we’d get on the beach, driftwood, sandstone bricks (left over from the construction of my parent’s house) and a few random pieces of pipe. Every couple years Dad would get out the orchard tractor and scoop up a fresh load of beach sand and put it in the sandbox. Each birthday produced new toys. 

Of course the neighborhood kids (about half of whom were my cousins) were all welcome. And it didn’t matter if they wanted to build their own castles or roads or use the toy cars and trucks with the ones built by others. Everybody could play however they wanted. 

Eigenvector’s software suite is a lot like that sandbox. There are a lot of tools (toys)! We’ve got everything from PCA to XGBoost. If you’re the builder type then you can use our PLS_Toolbox and MIA_Toolbox with MATLAB® to script and automate analyses and build new tools. Or you can use our existing highly refined point and click interfaces for a wide array of analyses. Have colleagues that don’t have access to MATLAB? That’s OK, they can use our Solo and Solo+MIA stand-alone software and share data and models. And they can all choose what operating system they like, Windows, MacOS or Linux. 

Unlike the sandbox, where it was typically hard to take one of your creations home with you, our Solo_Predictor and Model_Exporter tools allow users to apply their models outside the sandbox in a wide variety of ways.

So everybody, or as we like to say around here, EVRIbody is welcome in the Eigenvector sandbox. And our developers will keep providing new toys and make sure that the sand stays fresh!


Ready for MATLAB 2019b

Sep 25, 2019

The MathWorks just released MATLAB® 2019b, and as always, we’re ready! The latest versions of our PLS_Toolbox, MIA_Toolbox and Model_Exporter are all set to go. So whether you are doing PLS calibrations on NIR spectra, curve resolution of pharmaceutical tablets for content uniformity, or SVM models to classify LIBS spectra you can switch to the new MATLAB and keep right on working.

PLS_Toolbox and MIA_Toolbox running in MATLAB 2019b.

As far as compatibility updates go this was a fairly easy one: the changes from MATLAB 2019a to 2019b didn’t break any of our code. We have an extensive suite of test codes that we run to verify this, plus several of us here at Eigenvector always use the MATLAB pre-release in order to identify any issues.

But it’s not always the case that MATLAB upgrades are easy. Sometimes MATLAB updates are significant enough that it requires hundreds of man-hours on our part to make our software work properly. This is especially challenging because we try to maintain a five year window of compatibility with MATLAB versions. The current version of PLS_Toolbox (8.7.1) is compatible with MATLAB 2014a through 2019b.

What does that mean for users? It means that you can stick with your favorite version of MATLAB over the last five years (yes, we all have our favorite versions!) and still use our latest tools. And when you’re ready to switch to the newest version of MATLAB, that will work too! And of course you can also choose between operating systems as we support Windows, MacOS and Linux.

Happy Computing!


MATLAB is a registered trademark of The MathWorks, Inc.

LCVSF Awards 16 Scholarships for 2019

Aug 11, 2019

The Lake Chelan Valley Scholarship Foundation awarded 16 scholarships to college bound students from Manson and Chelan in a ceremony at Chelan’s Riverwalk Park on August 17. The awardees included four recent Chelan graduates; Sarah Brownfield, Jasmin Negrete, Owen Oules and Quinn Stamps; four recent Manson graduates; Bryan Bernardo, Megan Clausen, Santiago Santana Gonzales and Tyler Charlton; and eight renewing college students; Neil Carleton, Benjamin Charlton, Ahimelec Diaz, Malena Evig, Anabeth Morales Garcia, Henry Elsner, Addie Ivory and Jessica Oules.

This year’s winners will receive $2500 with the exception of one half-year award for $1250 for a total $38,750.

LCVSF also administers the Dick Slaugenhaupt Outstanding Junior Award, which is selected by the Chelan High School Students and Faculty. College bound CHS graduate Mario Gonzales received $1000.

LCVSF 2019 Scholarship Recipients and Board Members

Regarding this year’s scholarship applications, LCVSF Chairperson Betsy Kronschnabel noted “We continue to see bright young college bound applicants in the Chelan/Manson Valley who need a financial boost to get to school.  We carefully evaluate each application based on need, grades and goals, as is the mission of the LCVSF.” Board member Barry Wise added “We’re pleased to be a part of the process that helps support these ambitious young people.”

The LCVSF was made possible by Doug and Eva Dewar, who wished that their estates be used to help the children of the Chelan Valley. LCVSF was founded in 1991, and in that year five scholarships in the amount of $1000 each were awarded. The fund has grown substantially over the years from contributions from many people, but especially significant contributions from John Gladney, Ray Bumgardner, Don & Betty Schmitten, Marion McFadden, Virginia Husted, the Dick Slaugenhaupt Memorial and Irma Keeney.  Since 2004, LCVSF has awarded over $575,000 to Chelan Valley students.

LCVSF accepts applications from residents of the Chelan valley for undergraduate education. The awards are renewable for up to four years. LCVSF welcomes applications from graduating high school seniors as well as current college students and adults returning to school.

The LCVSF board includes Betsy Kronschnabel (President), Arthur Campbell, III, Linda Mayer (Secretary), Sue Clouse, Barry M. Wise, Ph.D. and John Pleyte, M.D. (Treasurer). For further information, please contact Barry Wise at

Eigenvector President Wise Receives Wold Medal

Jun 29, 2019

Eigenvector Reseach President and PLS_Toolbox creator Dr. Barry M. Wise was recognized for his achievements in the field of chemometrics* at the 16th Scandinavian Symposium on Chemometrics (SSC16) in Oslo, Norway. Wise received the Herman Wold Medal in gold “For his pioneering contributions in Process Chemometrics and his extensive, deep commitment to the proliferation of Chemometrics.” The award is sponsored by the Chemometrics Division of the Swedish Chemical Society and was presented by previous Wold medal winner Dr. Johan Trygg of Sartorius, AG.

Dr. Wise is the first American and the first non-academic to receive the Wold medal.

Wise gladly accepted the award and thanked the award committee and his fellow Eigenvectorians past and present for their support. He also acknowledged his good fortune and gratitude for guidance provided by his graduate advisor in Chemical Engineering Prof. N. Lawrence (Larry) Ricker and Prof. Bruce R. Kowalski in Chemistry.

Dr. Johan Trygg (left) presents Dr. Barry Wise with the 14th Herman Wold Medal in gold at the 16th Scandinavian Symposium on Chemometris in Oslo, June 18, 2019.

The text presented at the award ceremony is included below.

Motivation for Barry M. Wise

Dr. Wise has a PhD in Chemical Engineering from University of Washington, Seattle, USA and has been active in chemometrics since 1985. His research has focused largely on chemometrics in chemical process analysis, monitoring and control. E.g. he demonstrated PCA and PLS for monitoring systems to detect process upsets and failed sensors and introduced the term MSPC (multivariate statistical process control). His scientific contribution with 99 publications (H=33) cited 3700 times is impressive for a non-academic. 

To proliferate and cultivate Chemometrics, scientists and engineers must be made aware of the benefits of the methods, have access to the methods and educated on the proper use. Barry has successfully achieved all three goals. Dr. Wise has through Eigenvector Research, Inc., using PLS_Toolbox/Solo taught thousands of students how to apply chemometrics, from basic methods like PCA and PLS to advanced non-linear methods like ANNs and SVMs. There are thousands of chemometrics users, from novices to experts, who have been impacted by the efforts of Barry Wise. These people span myriad industries from semiconductor, pharmaceutical, petrochemical, manufacturing, medical devices, agriculture, food and beverage and automotive areas. 

Barry has also received numerous awards and honorary recognitions including Chemometrics award at Eastern Analytical Symposium (EAS, 2001) and Chair of GRC on Statistics in Chemistry and Chemical Engineering (1995), and CAC-2002. 

Barry has dedicated 30 years to the chemometric community and is a true role model for students and scientists in sharing knowledge and through polite and logical argumentation in scientific discussion. 

In conclusion, we find that Barry Wise is a most worthy receiver of the Herman Wold gold medal of 2019. 

*Chemometrics is the chemical discipline that uses mathematical, statistical, and other methods employing formal logic to design or select optimal measurement procedures and experiments, and to provide maximum relevant chemical information by analyzing chemical data.

Hyperspectral Image Analysis Tools

May 30, 2019

When I was first introduced to image analysis by Paul Geladi he referred to it as Multivariate Image Analysis or MIA. So when we released our image analysis package back in 2005 we called it MIA_Toolbox. Since then more and more analytical techniques have been adapted to produce images. On the micro scale this includes surface analysis techniques such as SIMS and Raman microscopy. On the macro scale it includes remote sensing such as infrared imaging. Based on the expansion of the number of channels in the spectroscopic dimension it’s become more common to refer to the data as Hyperspectral images. Regardless of what you call it, MIA_Toolbox was built to handle it!

Early versions of MIA_Toolbox brought the conventional chemometric tools and preprocessing methods found in PLS_Toolbox to images, focusing the analysis more on the relationship between variables (typically wavelengths or mass) then on the relationship between pixels. In this it was a departure from conventional image analysis which focuses on the latter. For instance Principal Components Analysis (PCA) could be applied to images, where the neighboring pixels are treated independently, and then the results could be displayed back in the image plane as image score plots, such as the one below.

Of course many other methods could be applied in a similar fashion, including Multivariate Curve Resolution (MCR) and of course classification methods such as SIMCA and PLS-DA. It was also easy to do regression provided that reference values corresponding to the image were available.

Since then we’ve added techniques that add spacial information such as Maximal Autocorrelation Factors (MAF) which finds factors that are more highly correlated in the image plane. An example of MAF is show below and it can be seen that it creates images with more contiguous areas than the PCA image shown above.

Texture is a measure of the spacial variations of intensity in an image. This property can be important in the quality of some manufactured surfaces, in crystallization processes, or to assess the homogeneity of pharmaceutical tablets. Since 2009 MIA_Toolbox has included texture filters which can be used to create spectra from images that capture the spatial variation.

With the integration of the ImageJ image processing library into MIA_Toolbox in 2011 particle analysis was enabled. It is now possible to create a workflow where hyperspectral images of particles are treated with PCA to reduce dimensionality, then fed into particle analysis where each particle becomes a sample with measured size and shape characteristics, then those are pushed into a classification method to sort particles based on both their physical and chemical attributes. A screen shot from such a work flow is shown below.

In more recent releases we’ve continued to refine the useability of the tools, adding more file importers, preprocessing methods, etc. And of course all of this is also included in our stand-alone image processing package, Solo+MIA.

Want to learn more about image analysis? We’re doing courses at this year’s EigenU Europe in Montpellier, FRANCE, and the SCIX conference in Palm Springs, USA. At EVRI we’re excited to create tools that address the next generation of chemical analysis.


EigenU Poster Winners

Jun 22, 2017

Hello EigenFriends and EigenFans,

Two months ago we hosted the 12th Annual EigenU at the Washington Athletic Club in Seattle, WA. We had over 50 people join us through six days of hands-on chemometric courses, and once again had an awesome poster session where users got to display their use of PLS_Toolbox and EVRI methods in their recent research. We named two winners to take home the poster prizes from the session: Dr. Gordon G. Allison of Aberystwyth University, and Dr. Amanda Lines of PNNL. Information about their posters are attached below; congrats to you both!

21866_IBERS Seattle Conference Poster_FINAL1

Says Allison, “The Eigenvector PLS toolbox, and later the MIA toolbox, has been a staple of my data analysis platform for over 10 years. If it wasn’t the best I would have moved on. The software integrates seamlessly into Matlab and I move between command line and gui at will. The flexibility and variety of algorithms in the PLS toolbox never ceases to impress me, and Eigenvector seem to never run out of ideas of how the toolbox can be refined and expanded… I heartedly recommend that PLS toolbox users come along to the annual Eigen University in Seattle, to hone their skills in basic to advanced chemomentrics. I’ve been to 3 and always learn something new and valuable. The atmosphere is vibrant, fun, friendly and informal, the quality of instruction excellent, and the location couldn’t be better.”

Dr. Amanda Lines of PNNL also took home a poster prize regarding her work on “Using multivariate analysis to quantify and identify speciation of plutonium”. The abstract is below:

Amanda M. Lines1, Susan R. Adami1, Sergey I. Sinkov1, Amanda J. Casella1; Gregg J. Lumetta1, and Samuel A, Bryan1

1- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA 99352

Development of more effective, reliable, and fast methods for monitoring process streams is a growing opportunity for analytical applications. Many fields can benefit from on-line monitoring, including the nuclear fuel cycle where improved methods for monitoring radioactive materials will facilitate maintenance of proper safeguards and ensure safe and efficient processing of materials. On-line process monitoring with a focus on optical spectroscopy can provide a fast, non-destructive method for monitoring chemical species. However, identification and quantification of species can be hindered by the complexity of the solutions if bands overlap or show condition-dependent spectral features. Plutonium (IV) is one example of a species which displays significant spectral variation with changing nitric acid concentration. Single variate analysis (i.e. Beer’s Law) is difficult to apply to the quantification of Pu(IV) unless the nitric acid concentration is known and separate calibration curves have been made for all possible acid strengths. Multivariate, or chemometric, analysis is an approach that allows for the accurate quantification of Pu(IV) without a priori knowledge of nitric acid concentration. Chemometric analysis is also an effective avenue for quantifying multiple species in solution that exhibit overlapping bands. This is demonstrated by the accurate measurement of multiple actinides (Pu(IV), Pu(III), U(IV), U(VI)) in multicomponent streams under dynamic conditions.

Thanks to everyone who participated in the poster session this year; all the posters were fantastic and it was dubbed the best EigenU poster session yet!

Top 10 reasons to come to EigenU 2017!

Mar 5, 2017

Howdy folks! All of us here at EVRI are getting excited for the 12th annual Eigenvector University, April 23-28 at the Washington Athletic Club in Seattle, WA. We’ve been updating our class list, and adding new examples and modeling techniques to make sure you get the best training in multivariate methods and chemometrics. Here are the top 10 reasons why we think you should be excited too:

  1. More experienced instructors – Courses at EigenU 2017 will be led by the EVRI staff including Neal B. Gallagher, R. Scott Koch, Robert T. Roginski, and Willem Windig, plus our Associate Rasmus Bro, and of course myself. Together we’ve got over 100 man-years of chemometric experience, and we’re all here to make sure you have a productive, fruitful week at EigenU.
  2. Wider variety of courses – In addition to our beginning track including PCA and PLS, we offer 11 advanced and specialty courses. This year features encore presentations of Managing Data, Models & Plots in PLS_Toolbox, and Model Deployment with Solo_Predictor & Model_Exporter. Calibration Model Maintenance returns this year with new and updated tools, as does the popular Bring Your Own Data (BYOD) Workshop where you work with your own data while you learn hands-on with EVRI’s team of instructors.
  3. Method-centric instruction – At EigenU we provide the background required to truly understand chemometric methods; we don’t just show you what buttons to push. Our goal is to make the literature in the field accessible to our graduates. Deeper understanding of the methods leads to better analysis!
  4. Spend a week in beautiful Seattle, WA – With Puget Sound and the Olympics to the West and Lake Washington and the Cascades to the East, the Emerald City is distractingly scenic. Plus, with attractions like the Space Needle, Pike Place Market, Seattle Art Museum, Seattle Mariners, and the largest ferry system in the US, there’s plenty to see and explore while not in class.
  5. The Washington Athletic Club – EigenU is held at the WAC, the nation’s premier city athletic club. The historic 21-story facility includes 5 floors of fitness facilities, 10 floors of Euro-styled techno-centric sleeping rooms, full service spa, and 3 restaurants.
  6. The food – From the continental breakfast, including the WAC’s signature sticky buns, the gourmet plated lunches, to afternoon snack bars, our guests always rave about the food.
  7. Networking – EigenU attendance is typically about 40 scientists and engineers with a range of chemometric expertise and wide variety of interests. This means you’ll have plenty of opportunity to find colleagues with common problems and complementary solutions.
  8. Evening events – EigenU provides ample opportunity to continue your chemometric learning and networking into the evening. This includes Tuesday’s PLS_Toolbox/Solo User Poster Session, Wednesday’s PowerUser Tips & Tricks Session, and Thursday’s Workshop Dinner, which is one more opportunity to enjoy the WAC’s fabulous food. The best two posters on Tuesday evening’s User Session will win a pair of Bose wireless headphones or wireless speakers!
  9. Flexible, multi-platform software – With PLS_Toolbox and MIA_Toolbox EVRI offers the most comprehensive set of chemometric tools available plus the flexibility of MATLAB. Our stand-alone packages Solo and Solo+MIA offer all the point and click tools of their MATLAB-based siblings. Plus they’re all available for Windows, Linux and MacOS. On-line tools Solo_Predictor and Model_Exporter provide a plethora of options for automating model application.
  10. Costs less – In spite of all its advantages, EigenU actually costs less than similar courses from our competitors, making it a reasonable and affordable option for everyone interested in honing their chemometric and advanced data analysis skills!

So it probably isn’t surprising that EigenU attendees are more than satisfied. Here’s what a couple of them had to say:

“EigenU is a wonderful, positive and informative place to learn about chemometrics methods that I feel confident applying to not only my research, but suggesting to collaborators as well.” -Brooke Reaser, University of Washington PhD Candidate.

“What you are offering here is unmatched.” – David A. Russell, Dupont.

Spots are already filling quickly so register today to reserve your place at EigenU 2017! Early registration ends March 23.

See you in April!


EigenU 2016 Poster Winners

Oct 6, 2016

Each spring at Eigenvector University in Seattle we showcase the scientific accomplishments of our users at the PLS_Toolbox/Solo Poster Session. With EigenU Europe quickly approaching, we thought it was about time to congratulate our poster winners from EigenU 2016 last April!

Brooke Reaser of the University of Washington, and Claire Muro of the University at Albany took home the poster prizes at the 11th Annual Eigenvector University. Brooke’s work used principal component analysis to determine the uptake of 13-C-labeling in Methylobacterium extorquens, while Claire’s poster focused on the differentiation of body fluid traces using PLSDA models. Their posters are attached below; congrats, ladies!

Forensic Body Fluid Differentiation Poster
claires-poster“PLS_Toolbox doesn’t just help with my research, it is an integral part of all of my work. I work with Raman spectroscopy, and my experimental data for any given project is usually thousands of spectra. I would say that PLS_Toolbox is just as important to my research as my Raman spectrometer, and I mean that. I wouldn’t be able to process the data or learn anything from it any way other than multivariate data analysis.” -Claire Muro, University at Albany PhD Candidate.

PCA C-13 Labeled Methylobacterium Extorquens AM1 poster
brookes-poster-screen-shotEigenU helped give me the idea to apply PCA to my metabolomics project in the first place, and the skills I learned there helped me in applying it successfully and meaningfully. EigenU is a wonderful, positive and informative place to learn about chemometrics methods that I feel confident applying to not only my research, but suggesting to collaborators as well.” -Brooke Reaser, University of Washington PhD Candidate.

For their efforts both Claire and Brooke took home Bose sound system products. Claire selected the Bose QuietComfort Headphones while Brooke took home the Bose Soundtouch Speaker System. We hope you enjoy them, you earned them! Congratulations again!

Eigenvector now has an Instagram account! Follow @eigen_guys to keep up with the latest adventures of the Eigenvector team, and make sure to check out our Twitter account for up-to-date info on courses and software.

Register for EigenU Europe, October 24-27

Oct 5, 2016

Registration for EigenU Europe in Montpellier, FRANCE is open! Join Dr. Barry M. Wise, Prof. Rasmus Bro and Dr. Sébastien Preys for four days, October 24-27, of beginning and intermediate chemometrics courses from the classic Eigenvector University series. The course will include:

We’ve also added a follow-on event Friday, October 28 with Dr. Fabien Chauchard on How to Implement Spectroscopic Techniques for Process Development.


To register and view lodging information, visit the EigenU Europe page. We hope to see you there in beautiful Montpellier next month!

Eigenvector now has an Instagram account! Follow @eigen_guys to keep up with the latest adventures of the Eigenvector team, and make sure to check out our Twitter account for up-to-date info on courses and software.

What Works and What Doesn’t

Jun 28, 2009

After SSC11 I got a note from my colleague Paman Gujral at the Automatic Control Laboratory at EPFL summarizing some of the talks. He wrote: “Rasmus Bro gave an excellent talk too about the pitfalls in using chemometric methods. Kowalski commented that software firms are a lot to blame for advocating methods that don’t work.” I was a little alarmed by this and so asked Rasmus about it, who wrote: “The comment of Bruce is maybe correct but it wasn’t meant as he states it. … as part of a discussion Bruce and others mentioned that also software companies have responsibilities in helping people take proper decisions. This was added to a more general agreement that education should be improved. So there was nothing dramatic or controversial in that.

In any case I’ve thought a great deal about that comment since Paman’s note. In fact, as a software company sometimes it’s hard to know when a new method comes out if it is going to live up to it’s initial hype. This is largely because nobody publishes negative results. If you lived on a steady diet of J. Chemo and ChemoLab, you’d think that EVERYTHING works, at least initially. So yes, it’s often up to us to sort out what works and what doesn’t. The often means coding it up ourselves, and trying it out. And sometimes even then the results are ambiguous. We don’t see where it definitely doesn’t work, and feel that, given what was in the original journal article, it’s worth putting into the software.

We figure that if more people have experience with a new method then eventually we’ll all figure out if it is generally useful. That happens faster when there is code available which implements the method. So yes, I’ll admit that we’ve put things in PLS_Toolbox that were “unproven.” I have stated this publicly, more than once. That said, I don’t recall ever promising these new techniques would work. Caveat emptor. Only in this case, it’s “let the user beware.”

I’ve put a lot of effort trying to make some methods live up to the initial claims. I could give you a list of my all time greatest “wastes of time” but at this point that would only serve to upset the originators of the methods. But I think we’ve been of more than a little service in helping sort some of these things out.

I certainly agree that “education should be improved,” and we strive to do that. One of the things we tell our students is to not believe everything they read or hear, and we try to give them the tools to dig past the hype. We also teach proper model validation. If you do a proper validation, you’ll at least know if one of these new techniques doesn’t work on your particular data.

But I don’t know how many times I’ve had to answer the question, “Why doesn’t your software do ______? The author/speaker says that it’s the best thing since Gauss.” And I have to answer, “Well, we haven’t tried it. But our experience suggests there are no silver bullets.”


Update on Chemometrics in Rome

Aug 6, 2008

Details are now available for our Basic Chemometrics in Rome, Italy, short course. Rasmus Bro will be joining me for this 3 day, hands-on course October 27-29, 2008.

The course page includes additional information about Rome, the course content, registration, prices, and nearby lodging. If there is anything you can’t find, please let me know!


Sabbatical at EPFL

Jul 16, 2008

In September of 2007 I received an offer I couldn’t refuse. When Professor Dominique Bonvin of Ecole Polytechnique Fédérale de Lausanne (EPFL) wrote and asked if there was a chance to have me spend some time there in 2008, it didn’t take long for me to send back a positive response.

Besides the fact that EPFL is in a beautiful location, (on Lake Geneva in Switzerland), Dominique’s group there at the Automatic Control Laboratory has research interests that are well aligned with Eigenvector’s, and, of course, our users. For instance, they have worked on issues surrounding MSPC and curve resolution for investigating reacting systems.

I’ll be working with Michael Amrhein on model updating schemes for batch processes. This is rather timely as we work more and more with monitoring batch processes, including semiconductor manufacturing and bioreactors. Model updating is important because these process exhibit considerable drift with time.

I’ll be spending a little more than 2 months at EPFL, arriving in the last couple days of August and leaving in the first few days of November. My wife (and assistant!) Jill, will be along, as will daughters Clare and Mattie. It should be pretty much business as usual at EVRI, though it make take a few days on either end to set up operations to process orders, etc.

I look forward to this time to “sharpen the saw.”


EigenU Poster Winners

May 1, 2007

The EigenU poster session was tonight. This is a chance for our students to show their “chemometric stuff.” The attendees of EigenU vote on the best posters. This years’s winner’s were:

Jamin Hoggard and Rob Synovec, “Targeted PARAFAC Analysis with a Custom GUI for GC x GC x TOFMS Data”


Fang Cheng, Laura J. Gamble, David W. Grainger and David G. Castner, “Examination of Suface Hydrolysis in Thin Organic Films using Time-of-Flight Secondary Ion Mass Spectrometry and Principal Components Analysis”

The winners take home new Apple iPod Nanos. Congratulations to jamin and Fang!

Good job guys!


Eigenvector University 2007

Apr 28, 2007

Our annual series of chemometrics short courses starts tomorrow morning, April 29. So I’m sitting here at the Washington Athletic Club and enjoying a beverage and thinking about the week to come. We’re all set–the computers were delivered this morning and Scott came and installed software this afternoon. Jeremy will come tomorrow morning with all the class notes–once again organized by him and his wife Angela Carden. I’m patiently waiting (well, maybe not) for Bob Roginski to get here from Indiana, then we’ll be all ready for the morning.

Once again, we have about 30 students arriving from all parts of the country and overseas. Poster session has some good entries–looks like there will be some competition for the iPods!

All in all, looking forward to a good week!



Jan 11, 2007

Eigenvector Research, Inc. (EVRI) is a Chemometrics Research and Applications Company located in Wenatchee, Washington, USA. Our mission is to provide advanced chemometrics support for the semiconductor and chemical process industries, consumer product manufacturers and analytical instrument developers. Our goal is to be your complete source for state-of-the-art chemometric tools and know-how. More information on Eigenvector Research can be found on our main web page.