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Introduction: The similarity between partial least 
squares discriminant analysis (PLSDA), Fisher’s linear 
discriminant analysis (LDA) and a number of 
multivariate analysis methods has been discussed 
previously.[1,2] It is shown here that using data 
preprocessing with class-centroid centering followed 
by generalized weighting converts PLSDA to LDA for 
then general case of unbalanced designs. 
 
Data Arrangement and Intra-Class Variance for the 
Classification Problem: In the classification problem, 
it is assumed that a set of measurements are made on 𝑁 
variables for 𝐽 different sets of samples that belong to 
different classes. The data for a single subset can be 
arranged in a 𝑀! ×𝑁 data matrix 𝐗! with 𝑀! samples 
and 𝑁 variables. The mean for the 𝑗"# class 𝐱(! is given 
by 

 𝐱(! = 𝐗!$𝟏%!
&
%!

 (1) 

where 𝟏%! is a 𝑀! × 1 column vector of ones. The term 

𝐗!$𝟏%! corresponds to a summation and the &
%!

 term 

divides the sum by the number of samples in the class 
to provide the class mean. The measurements can be 
collected into a single 𝑀 ×𝑁 matrix 𝐗 as shown in 
Equation 2 where 𝑀 = ∑ 𝑀!

'
!(& . Equation 3 defines 𝐘 

as a 𝑀 × 𝐽 set of “dummy” variables with 𝑀!)& in each 
row for the 𝑗"# class in the corresponding 𝑗"# column. 
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Typically, each class contains multiple measurements 
resulting in a data set with 𝑀 > 𝐽. The different entries 
in 𝐘 account for the potential of an unbalanced design. 
The intra-class variance, 𝚺+,"-., is calculated using:  

𝚺+,"-. =
&
%
∑ 𝑀! =𝐗/ − 𝟏%!𝐱(!
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𝐓
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Equation 4 is a pooled covariance that assumes the 
intra-class covariance is the same for all classes. 
In the special case of a balanced design, all the 𝑀! are 
equal and the data mean, 𝐱( = 𝐗$𝟏%

&
%

, corresponds to 
the model origin. However, in the more general case 
where the 𝑀! are not equal it is, the class centroid 
𝐱(12," = 𝐗$𝐘𝟏'

&
'
, that corresponds to the model origin.  

 
Definition of Inter-Class Variance: Centering the 
original data to the class centroid is given by: 

 𝐗 − 𝟏%𝐱(12,"$ = 𝐗 − "
$𝟏3𝟏'

$𝐘$𝐗 =  

 = =𝐈 − "
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$ 𝐂4,5?𝐗. (5) 

where it is recognized that 𝟏'$𝐘$ = 𝟏%$ 𝐂4,5 and 
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The term =𝐈 − "
$𝟏%𝟏%

$ 𝐂4,5? can be considered a 

centroid-centering operator where 𝐗6 = =𝐈 −
"
$𝟏%𝟏%

$ 𝐂4,5?𝐗 is the data matrix centered to the class 
centroid (i.e., class-centroid preprocessing). The term 
𝐗6$𝐘 is the class means (mean of each class) centered to 
the class centroid so that the definition of the inter-class 
variance 𝚺+,"2- can be given by 

 𝚺+,"2- =
&
')&

𝐗6$𝐘𝐘$𝐗6. (7) 

 
Linear Discriminant Analysis (LDA) via a 
Generalized Eigenvalue Problem: In LDA the 
objective is to find a set of discriminators, 𝐰, that 
maximizes the separation between the classes relative 
to within the classes. It is proposed that the scores are 
given by 

 𝐭 = =𝐈 − "
$𝟏%𝟏%

$ 𝐂4,5? 𝐗𝐰 = 𝐗6𝐰 (8) 

and the LDA objective is formalized as 

 max
𝐰

𝐰%𝚺&'()*𝐰
𝐰%𝚺&'(*+𝐰

, where	𝜆 = 𝐰%𝚺&'()*𝐰
𝐰%𝚺&'(*+𝐰

 (9) 
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where the Rayleigh coefficient, 𝜆, is a scalar. Taking 
the derivative of Equation 9, setting to 𝟎 and 
rearranging [e.g., see 3] yields  

 𝚺+,"2-𝐰 = 𝜆𝚺+,"-.𝐰. (10) 

Equation 10 is a generalized eigenvalue problem (GEP) 
with eigenvalue 𝜆 and eigenvector 𝐰. The GEP can be 
solved using a Cholesky factorization or a QZ 
algorithm [4,5] but 𝚺+,"-. needs to be full rank. A 
general approach to handling ill-conditioning and rank 
deficiency is regularization. Two often used 
regularization procedures include ridging 𝚺+,"-. →
𝚺+,"-. + 𝜃𝐈 where 𝜃 is a small scalar, and generalized 
weighting[6] 𝚺+,"-. → 𝚺+,"-. + 𝐀 where 𝐀 is a full rank 
matrix. 
Inspection of the 𝚺+,"2- term in Equation 7 shows a 
multiplication by 𝐘 that is rank 𝐽 (because 𝑀 > 𝐽). 
Therefore, it is expected that a typical GEP will include 
𝐽 or potentially 𝐽 − 1 eigenvectors due to class centroid 
centering. 
 
Linear Discriminant Analysis (LDA) via a 
Symmetric Eigenvalue Problem:  
Defining 𝐩 = 𝚺+,"-.

& *⁄ 𝐰 allows for a variable transform 
of the GEP to a symmetric eigenvalue problem (SEP). 
Substitution of the definition into Equation 10 gives the 
SEP as [e.g., see 3] 

 𝚺+,"-.
)& *⁄ 𝚺+,"2-𝚺+,"-.

)& *⁄ 𝐩 = 𝜆𝐩. (11) 

where it is assumed that 𝚺+,"-. is full rank or has been 
regularized. It should be clear that the leading constant 
&
'
 in 𝚺+,"2- only scales the eigenvalue and can be ignored 

in Equations 10 and 11 without influencing the 
calculation of 𝐰 and 𝐩. With this consideration, 
Equation 7 can be substituted into Equation 11 to give 

 𝚺+,"-.
)& *⁄ 𝐗6$𝐘𝐘$𝐗6𝚺+,"-.

)& *⁄ 𝐩 = 𝜆𝐩. (12) 

Because Equation 12 is an SEP, it can be considered 
principal components analysis (PCA) on the matrix 
𝐘$𝐗6𝚺+,"-.

)& *⁄  or it can be considered a PLS model 
between 𝐗6𝚺+,"-.

)& *⁄  and 𝐘 i.e., PLSDA. The term 
𝐗6𝚺+,"-.

)& *⁄  is the original data centered to the class 
centroid weighted by the inverse square root of the 
regularized intra-class covariance 𝚺+,"-.

)& *⁄  (i.e., GLSW 
preprocessing [6,7]). Using the definition for the 
variable transform, 𝐰 = 𝚺+,"-.

)& *⁄ 𝐩, the scores in Equation 
8 become 

 𝐭 = 𝐗6𝚺+,"-.
)& *⁄ 𝐩 (16) 

Therefore, class centroid centering and generalized 
weighting preprocessing converts PLSDA to LDA.  

In the special case of a balanced classification problem, 
then all the classes have the same number of samples so 
that =𝐈 − "

$𝟏%𝟏%
$ 𝐂4,5? → R𝐈 − "

,𝟏%𝟏%
$ S and 𝐱(12," →

𝐱(. Also, in the absence of collinearity in the intra-class 
variance and all the variables have equal variances, 𝜎*, 
then 𝚺+,"-. → 𝜎*𝐈. When these two criteria are met, 
then PLSDA with mean-centering also becomes LDA. 
 
Conclusion and Discussion: The use of class centroid 
centering and generalized weighting preprocessing 
converts partial least squares discriminant analysis 
(PLSDA) to linear discriminant analysis (LDA). For 
many problems the intra-class covariance matrix, 
𝚺+,"-., may be ill-conditioned or rank deficient and 
require regularization for the DA models to be 
identifiable. Differences in results can be observed 
based on the regularization procedures used and the 
matrix decomposition method. For example, the SEP 
can be based on a stable and accurate singular value 
decomposition, and the GEP often uses an eigenvalue 
decomposition algorithm (e.g., QZ). Although the 
factors may be different depending on the 
decomposition algorithm (e.g., PCA, PLS or QZ), they 
are expected to span a similar subspace and provide 
similar class predictions. 
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