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Introduction: An example is shown where 
partial least squares discriminant analysis 
(PLSDA) is converted to Fisher’s linear 
discriminant analysis (LDA) when PLSDA 
uses class-centroid centering followed by 
generalized weighting preprocessing. Part II 
provides the theoretical development to show 
thee mathematical equivalence.[1] 
Example Data: The Arch data set contains 
XRF measurements for ten elements in 
obsidian samples from four quarries of known 
origin and several samples from archeological 
sites of unknown origin.[2] The data set can be 
found in PLS_Toolbox and Solo demo 
datasets.[3] For the examples shown here, the 
data set was reduced to three classes 
corresponding to three quarries: 1) Koncoti, 2) 
Sugar Hill and 3) Annadel. 
LDA Comparisons: In LDA, the objective is 
to find discriminator vectors that maximize 
the inter-class variance, 𝚺!"#$%, to intra-class 
variance, 𝚺!"#%&.[1] For the three-class 
problem, the measured XRF spectra are 
collected into a data matrix 𝐗 with a 
corresponding matrix of dummy variables 𝐘: 
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where 𝟏'& is a 𝑀( × 1 column vector of ones 
and 𝑀( is the number of samples in each class. 
The definition of 𝐘 accounts for unbalanced 
designs where the 𝑀( are not equal. PLSDA if 
often performed with only mean-centering 
without explicitly accounting for intra-class 
variance. This model (referred to as PLSDA) 

is compared to PLSDA using class-centroid 
centering and generalized least squares 
weighting (GLSW)[4] that explicitly accounts 
for intra-class variance (referred to as 
PLSDAp). The class-centroid is defined as the 
mean of the individual class means and is not 
affected by the number of samples in each 
class. This preprocessing enables PLSDA find 
a good solution using fewer latent variables. 
Additional LDA algorithms used principal 
components analysis (PCA) and an eigenvalue 
decomposition (Eig) based on a generalized 
eigenvalue problem.[1,5] In each case, the 
XRF data were autoscaled and two latent 
variables were used. In addition, PLSDAp and 
PCA also used class-centroid centering and 
GLSW. The Eig model did not use weighting 
but the 𝚺!"#%& matrix was regularized to match 
the GLSW approach.  
Results: Model fits to	 𝐘 (class-centroid 
centered) provide a direct performance 
comparison and are listed in Table 1. RMSE 
for PLSDAp, PCA and Eig differ only at the 
fifth decimal point (PCA and Eig had identical 
results). Figure 1 shows fits for Class 2 vs 
Class 1 for PLSDA (top) and PLSDAp 
(bottom). Differences in fits for PCA and Eig 
compared to PLSDAp were not visually 
discernable and are not shown. Comparison 
shows that PLSDAp has tighter classes 
compared to PLSDA attributed to GLSW 
explicitly accounting for intra-class variance. 
In a second example, 1,000 simulated samples 
for Annadel were added to Class 3 resulting in 
an unbalanced design. Figure 3 shows that the 
model origin is now dominated by Class 3 but 
Figure 2 (bottom) shows that the class-
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centroid is not severely affected and the results 
are similar to those for Figure 1 (bottom). 
Table 1. Root mean square error of fits to 𝐘. 

RMSE Konocti Sugar 
Hill 

Annadel 

PLSDA 0.18622 0.11901 0.10092 

PLSDAp 0.05406 0.04736 0.05746 

PCA 0.05408 0.04735 0.05748 

Eig 0.05408 0.04735 0.05748 

 

 
Figure 1. Fits for Class 2 vs Class 1: (top) 
PLSDA, (bottom) PLSDAp. 
Conclusion: 
The example showed that PLSDA can be 
converted to Fisher’s LDA when using class-
centroid centering followed by generalized 
weighting preprocessing. Results showed that 

algorithms PLSDAp, PCA and Eig yield 
similar results for LDA. 
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Figure 2. Fits for Class 2 vs Class 1 with an 
unbalanced design: (top) PLSDA, (bottom) 
PLSDAp. 
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