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Introduction 
Hyperspectral imaging is a popular and useful tool for a broad range of sensing applications and 
the goal of this white paper is to introduce hyperspectral imaging in a manner assessable to those 
not yet familiar with the subject. Hyperspectral imaging is also referred to as multivariate imaging 
and a short introduction to multivariate image analysis using principal components analysis (PCA) 
is also provided. PCA is ubiquitous to multivariate analysis and is often used as an exploratory 
tool for hyperspectral images (HSI). Due to its favorable mathematical properties, PCA is also 
used as the framework for more advanced multivariate algorithms employed in the analysis of HSI. 
As a result, even a cursory understanding of PCA can provide insights into many algorithms used 
in multivariate image analysis (MIA). After an introduction to HSI and PCA, several examples of 
PCA applied to hyperspectral images are shown. 
Multivariate and Hyperspectral Imaging 
Gray-scale images can be considered “univariate images” and typical uint8 (unsigned 8-bit integer) 
images have color values ranging from 0 to 255. These images provide spatial information and a 
vast array of tools exist for extracting spatial information from gray-scale images. Typical color 
images can be thought of as three univariate images combined into a red-green-blue (RGB) display 
and enhance the spatial statics significantly. Figure 1 demonstrates this concept by showing an 
example gray-scale on the left and a corresponding RGB true color image on the right. The 
example is intuitive and easily assessable by humans that see in color. However, what happens 
when the number of colors, 𝑁, increases beyond three? When 𝑁 >3, it is difficult to make a simple 
RBG representation unless only three colors are selected for display. Additionally, it is highly 
likely the three selected 

 



Figure 1. Example gray-scale image (left), corresponding three univariate color images (middle), 
combined univariate color images to multivariate RGB image (right). 

colors will not match the natural true color scheme used in human vision resulting in a false color 
image. When 𝑁 > 1, the image is no longer univariate and is considered multivariate, and when 
𝑁 ≫ 1, the image is considered “multispectral” or “hyperspectral.” The definition is loose, but 
images with 1 < 𝑁 < 10′s are often referred to as multispectral and for 𝑁 > 10′s they are termed 
hyperspectral. It was shown above in an intuitive manner that the information content dramatically 
increased in Figure 1 as 𝑁 = 1	 → 	𝑁 = 3. Consequently, it might be expected that the information 
content in a hyperspectral image can be very large and mathematical tools used for analysis of 
these images can be quite sophisticated.[1,2] 
The variables in HSIs often correspond to signal measured in spectral channels such as absorbance 
or reflectance in infrared imaging or counts at specific mass channels in mass spectrometry, and 
this is where HSI gets “spectral” in its name. There are many types of spectroscopy used in HSI 
e.g., infrared, magnetic resonance imaging, Raman and UV-Vis. Anything that can be imaged for 
multiple variables can be considered a multivariate image and HSI can also be obtained for 
multiple images for a single sample. For example, confocal Raman imaging can be used to image 
samples at different depths and depth profiling using ToF-SIMS imaging for surface analysis can 
be obtained by successively sputtering layers from a sample after acquiring an image. 
Hyperspectral imaging is most useful when measuring and investigating heterogeneous samples. 
The reason is that many pixels (1000-10,000’s of spectra) are acquired simultaneously for an image 
and these can be used to characterize background clutter signal (signal not of interest). Anomalous 
signal that may be of interest can be found by comparing all the image spectra to the distribution 
of clutter spectra. Although signal from anomalies may be small and less frequently observed, the 
signal in a single pixel can be dominated by an anomaly. In contrast, many analytical procedures 
create homogeneous mixtures of a sample before measurements thus diluting minor signal making 
it much more difficult to detect and classify signal of interest. In addition to detecting anomalies, 
grouping pixels with similar signals results in image segmentation and the spatial statistics 
provided is useful for particle analysis, characterizing sample homogeneity, land use 
characterization, precision agriculture and change detection. 

 



Figure 2. Example application of remote hyperspectral imaging. 

HSI is used at scales from nanometer to astronomical. Imaging platforms are used for remote 
sensing from satellites and airborne aircraft, standoff sensing (Figure 2), and micro-imaging. 
Applications include surface analysis, medical imaging, chemical samples, cultural heritage and 
art, agriculture, environmental, earth observing, and many more. 

A hyperspectral image (HSI) given by 𝐗 is size 𝑀! ×𝑀" × 𝑁 where 𝑀! ×𝑀" corresponds to the 
spatial dimensions and 𝑁 corresponds to the spectral dimension. Each image contains a total of 
𝑀 = 𝑀!𝑀" pixels and an individual pixel is 𝐱# = [𝑥#,% 𝑥#,& ⋯ 𝑥#,']( (Figure 3). Each 
pixel can be referenced by its subscript 𝐱#!,#" where 𝑚! = 1,… ,𝑀! and 𝑚" = 1,… ,𝑀", but it is 
often more convenient to use the linear index 𝐱# where 𝑚 = 1,… ,𝑀. Correspondingly, each 
voxel can be referenced by its subscript 𝑥#!,#",) where 𝑛 = 1,… ,𝑁 or by its linear index 𝑥#,). 
Although the subscript reference may seem more natural, many applications such as principal 
components analysis use the linear indexing reference. To understand this, the concept of matrix 
“matricizing” is introduced. Matricizing rearranges an 𝑀! ×𝑀" × 𝑁 image 𝐗 to a 𝑀 ×𝑁 matrix 
𝐗 as shown in Figure 4. Matricizing destroys the spatial structure but creates a matrix of measured 
spectra amenable to analysis by principal components analysis. 

 
Figure 3. Example of a hyperspectral image cube. 

Principal Components Analysis (PCA) for Hyperspectral Images: Multivariate Image 
Analysis (MIA) 
As stated in the introduction, principal components analysis (PCA) is ubiquitous to multivariate 
analysis and PCA can be traced back to at least the early twentieth century.[3,4] Additional 
descriptions of PCA and its applications can be found in [5] and [6] and in thousands of papers on 
the subject. PCA is especially useful when the number of variables 𝑁 in a data matrix 𝐗 is large 
and there is redundancy, or correlation, between the variables. Spectroscopic measurements, like 
those used in HSI, often exhibit correlation (see the discussion in [7]). PCA finds linear 
combinations of the 𝑁 variables that captures correlations between variables and samples (pixels) 
to provide a smaller set of 𝐾 new variables called “loadings”, i.e., loadings are linear combinations 
of the original variables. It is typical in HSI that 𝐾 ≪ 𝑁 resulting in significant data compression 
and improved signal-to-noise. Coefficients are also obtained for each pixel to describe how much 
each loading contributes to the signal in that pixel. The coefficients are called “scores” and are 
stored in a 𝑀 × 𝐾 matrix. In summary, PCA is a matrix decomposition performed on the 𝑀 ×𝑁 
matricized data matrix 𝐗, that reduces the size of the problem to a 𝑀 × 𝐾 scores matrix that 



encompasses redundant information in the image. The scores capture the spatial statistics in the 
HSI and the final step reshapes the matricized scores image(s) back to a 𝑀! ×𝑀" × 𝐾 image cube 
that can be used for visualization. Several examples are shown below. Analysis was performed 
using Solo and MIA_Toolbox [Eigenvector Research, Inc., Manson, WA]. 

 
Figure 4. Matricizing an 𝑴𝐱 ×𝑴𝐲 ×𝑵 image 𝐗 (left) to a 𝑴×𝑵 matrix 𝐗 (right) with 𝑴𝐱 ×𝑵 sub-
images 𝐗𝒎𝐲 stacked vertically. 

Scores images can be examined one-at-a-time as gray-scale images for each of the 𝐾 principal 
components (PCs) where 𝑘 = 1,… , 𝐾. This exploratory procedure is far more efficient than 
attempting to visualize all 𝑁 images at each wavelength one-at-a-time – especially when 𝑁 is large. 
Figure 5 (left) shows an example of PCA scores image for PC 2 (𝑘 = 2) for a pharmaceutical tablet 
obtained using infrared imaging. The yellow color corresponds to an active ingredient distributed 
as ~200-400 µm ellipses in the image. In the PCA decomposition, the first principal component 
(PC) is the combination of variables that captures the most signal in the image. The second PC 
captures the second most signal and successive PCs are ordered by the amount of signal described 
in the image. In Figure 5 (left), PC 2 captures approximately 19% of the variance, or information, 
in the image. 
In contrast to images for a single PC, Figure 5 (right) shows an RGB false color image for the 
same HSI image for scores on PC 1, 3 and 4 combined (red, green, blue respectively) capturing 
approximately 72% of the total information in the image. Any combination of scores can be 
displayed in this fashion. In Figure 5 (right), two types of additives are shown as irregularly shaped 
~200-400 µm particles in cyan and yellow-green. Figure 5 shows that the two additives were 
discriminated from the active ingredient even though their signal is overlapped in the image. 
Figure 6 shows another chemical image for a drug bead embedded in epoxy using time-of-flight 
secondary ion mass spectroscopy (ToF-SIMS). The signal-to-noise is not high in an individual 
pixel but the averaging aspects of PCA provides the general signal trends such as the bead coating 
as a vertical purple blue band on the right-hand side, the active ingredient is are pink and orange 
particles embedded in a green colored excipient. The image in Figure 6 (left) shows PC 1 that 
captures nearly 27% of the information with the active ingredient as yellow “islands” and Figure 



6 (right) shows the scores on PCs 2, 3 and 4 capturing a total of 8.7% of the signal in the image. 
This small 

   
Figure 5. Chemical image of a pharmaceutical tablet, 218 by 208 pixels measured in the infrared at 
250 wavenumbers 1800 to 800 cm-1 with 4 cm-1 resolution. The data were mean-centered before 
PCA and the scores were scaled (contrasted) to lie between 0±2 standard deviations [this contrasting 
is called “autocontrasting”]. (left) Scores image on PC 2 showing an active ingredient in yellow. 
(right) RBG false color image of the scores on PC 1, 3 and 4 respectively showing additives in cyan 
and yellow-green. [Data from Agilent www.agilent.com.] 

   
Figure 6. Chemical image of a prednisolone sodium in microcrystalline cellulose and lactose, 256 by 
256 pixels (250 by 250 µm2) measured at 93 mass channels. The data were Poisson scaled (3% offset) 
and mean-centered before PCA. The scores were autocontrasted. (left) Scores image on PC 1 with 
active shown in yellow. (right) RBG false color image of the scores on PC 2, 3 and 4 respectively show 
the active ingredient is in pink and orange yellow, excipient in green and yellow and coating in purple 
blue as the vertical band on the right-hand side. (Data from Belu[9] and also described in [10].) 

Image of Scores on PC 2 (19.23%)
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Image of Scores on PC 1 (65.12%), 3 (4.67%) & 4 (2.33%)
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percentage is not unusual for ToF-SIMS and a wide variety of data preprocessing approaches are 
often used to enhance signal of interest. In this example, the data were Poisson scaled [8] and 
mean-centered. 
The chemical images in Figures 5 and 6 are examples of small spatial scales on the order of 
microns. In contrast, it is typical for cultural heritage and art research to study at centimeter or 
meter scales. Figure 7 shows PCA applied to an image of a small section of a 15th Century 
Palimpsest where older writing (horizontal script) was washed off and overwritten by more modern 
script (vertical). As might be imagined, the horizontal writing is generally more difficult to see in 
the image and a “de-cluttering” preprocessing was used to suppress signal from the modern writing 
and paper in an effort to enhance the ancient script.[11] The de-cluttering is based on generalized 
least squares weighting[12-14] and although the suppression isn’t perfect, the procedure is useful 
as a synergistic image analysis tool and can be used in a wide variety of applications.[15,16] 

 
Figure 7. Small section of a 15th Century Palimpsest 495 by 935 pixels 365-1000 nm, Library of 
Congress, Preservation Research and Testing Division.[11] (top) 1-Norm and GLSW suppression of 
paper and modern ink [verical script]. (bottom) GLSW suppression of paper ink with top paper 
pixels excluded. 

Image of Scores on PC 2 (6.25%), 6 (6.25%) & 7 (6.25%)

Image of Scores on PC 1 (12.96%)



Standoff and remote sensing applications are at meters or kilometer distances where atmospheric 
correction might be employed. Figure 8 shows a mid-infrared image of mineral samples mounted 
on a 1.07 m × 1.22 m plywood board imaged at a distance of 14 m. The data are described in detail 
in Myers et al.[17] for a similar image on an aluminum board. The RGB image corresponds to PC 
1, 3 and 4. PC 1 captures a large fraction of the variance while discrimination of the minerals is 
associated with PCs >1 that capture a much smaller fraction of the image’s information. The 
objective of the original study was to determine if a library of laboratory measured spectra could 
be used to detect and classify each of the 24 samples in the image using target detection. The study 
showed that this was possible for many but not all of the minerals studied. However, with a few 
exceptions, it is encouraging that PCA exploratory analysis clearly discriminates the minerals quite 
well in Figure 8. PCA also discriminates the label under each sample and grain in the plywood. 

 
Figure 8. Standoff image 320 by 200 pixels of mineral samples mounted on a plywood board at 14 m 
in the 1300 to 850 cm−1 (7.7 to 11.8 μm) range at 4 cm−1 resolution acquired on a Telops imager 
[www.telops.com]. The data Poisson-scaled, 1-mean-centered prior to PCA. 

Figure 9 shows the last example measured from a Landsat 8 satellite. This is a multi-spectral image 
measured at 8 bands from a distance of about 705 km above the earth. The image is of Lake Chelan 
in north central Washington, USA. The lake is over 80 km long and 450 m deep. Figure 9 shows 
a false color RGB image for scores on PC 1, 2 and 3. Because color order is arbitrary it is a 
coincidence that PC 2 corresponds to the green color associated with vegetation near valley 
bottoms, and PC 3 corresponds to the blue color associated with water signal in the image. Bright 
yellow-green in the southeast of the image corresponds to agricultural areas (orchards and 
vineyards) and lawn. The discrimination of different land characteristics in Figure 9 demonstrates 
how Landsat images can be used for land use monitoring and management. 
Conclusions 
Hyperspectral images contain enormous amounts of information and are being used in a broad 
range of applications. Principal components analysis (PCA) is a useful tool from multivariate 

Image of Scores on PC 1 (96.10%), 3 (0.30%), 4 (0.15%)



analysis that can be used to explore hyperspectral images. There are many more imaging 
methodologies and tools available for analysis of hyperspectral images. However, one of the 
biggest challenges in evaluating the performance of HSI analysis algorithms is establishing ground 
truth because of potential registration mismatch in the spatial domain and mixed pixels can be 
difficult to unequivocally quantify and classify. New methods and uses for HSI are being 
developed and it is anticipated that the field of hyperspectral imaging will grow for many years to 
come. For additional information into the growing field of hyperspectral imaging and multivariate 
image analysis, the interested reader is encouraged to explore references [1] and [2] and view 
webinars at https://eigenvector.com/resources/webinars/. 

 
Figure 9. Remotely sensed image 2050 by 2150 pixels measured at eight bands (Bands 1 to 7 plus 
Band 9) and a 30 m spatial resolution. The data were Poisson-scaled, normalized to 1-norm and 
mean-centered prior to PCA and the scores were autocontrasted [a similar image without Poisson-
scaling can be found athttps://www.impopen.com/vi-toc/V_IASIM-2018]. 
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