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Outline

¢ The calibration transfer problem
¢« Instrument differences, drift, environment changes
e Data sets
+ Pseudo gasoline
« Corn
» Standardization approaches
+ Generalized Least Squares (GLS) preprocessing
+ Piece-wise Direct Standardization (PDS)
¢ Preprocessing approaches
*  Multiplicative scatter correction (MSC)
+ Standard normal variate (SNV)
* Second derivative
¢ Study Design
¢ Comparison of results
« Conclusions
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Pseudo Gasoline Data

NIR Spectrum of Pseudo Gasoline
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Original Abstract

Combining Instrument Standardization and Calibration Transfer Methods:
What Methods, and What Order?

Note title change--we're going to look at just prepro and transfer methods
at this point, not combined transfer methods.

Abstract: Spectroscopic instrument differences can be mitigated by data
preprocessing methods (e.g. baselining, derivitization, multiplicative
scatter correction) and standardization methods (e.g. piece-wise direct
standardization, orthogonal signal correction, generalized least squares
weighting). Each of these methods has strengths and weaknesses in the
face of different types of instrument non-idealities. Can these methods be
used in combinations that are more effective than single approaches?
This talk discussed how combinations of techniques can be used.
Approaches are tested on 3 NIR data sets with different issues.
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Reasons for Calibration Transfer

* No two instruments identical

« Some calibrations depend on very small changes in data
» Single instruments often drift

e Aging parts, dirt, part replacements

¢ Temperature, humidity

e Standardization

* New interferences in samples
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Difference Between Instruments
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Absorhance

Corn Data

NIR Spectrum of Corn Samples
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Selection of Transfer Samples

¢ Transfer samples should

¢ be “high leverage”
« span the space of differences

* Several ways to choose

* Hand select (based on PC scores, etc.)
* Find high leverage in PCA
* Find high leverage based on calibration model
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Difference Covariance

Xd = (Xl,;r - il,tr) - (Xz,tr - i2,tr)

XiX,

N-1
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Difference Between Instruments

Ahsorhance Difference

Difference Between Corn Samples
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‘ Spec 1 H MC Specl
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Development of GLS
Weighting Matrix
. Difference Inverse
Covariance Sqrt(Cov)
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Covariance to Weighting Matrix
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Effect of Parameter g

Singular Values of G as a Function of g

Decreasing g
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Piece-wise Direct Standardization

Master Instrument

Absorbance
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Orthogonal Signal Correction

Determine factor which describes large amounts
of variance in X while being orthogonal to Y
Deflate X

Build PLS model that predicts scores of deflation
factor

Use PLS model to estimate amount of factor to
remove from new X
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Application of GLS Weighting
Matrix
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PDS Model

X, =X,F+1b,

T
Il

Pseudo Gasoline Master Before
and After GLS

Master Test Spectra Before Application of GLS
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Pseudo Gasoline Difference

Apsorbance

Before and After GLS

Difference Between Test Spectra Before Application of GLS
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Corn Study Design

* 4 analytes
* moisture, oil, protein, starch

* 6 ways

to transfer

* between 3 instrumets: m5, mp5, mp6
* 2 methods tested

e PDS and GLS
* 7 preprocessing options

¢ SNV, 2nd deriv, and MSC, before and after, or none
¢ 336 transfers total (4x6x2x7)
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Typical Calibration and Test Data

Standardizing
MPS5 to M5
for Corn
moisture
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Model Instrument

Comparison of Methods for

Corn Data

¢ Available data
« 80 samples split 60/20
¢ 3 instruments
e 4 analytes
* 10 Transfer samples selected
* Based on model inverse for PDS
* Based on PCA leverage for GLS

¢ Tested both methods on all combinations of

instrument and analyte
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Issues with Meta-parameters

¢ GLS has only one parameter, g
« PDS

* Window width

* Parameters for sub models (LVs or tolerance)
« OSC

* Number of OSC LVs

* Tolerance of initial iterations

+ Tolerance on reconstruction

¢ Number of LVs in PLS calibration models

e Try to shown each technique in best light!
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Results from Previous Study

on Corn Data
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Results of Previous Study on
Corn Data

Performance of Standardization Methods on Corn Data

OSC Typical Case
0SC Best Case

GLS Best Case

GLS Hand Selected
PDS Standardization

Same Instrument

Standardization Method

Unstandardized

o 05 [
Average RMSEP over all Analytes and Instruments

Sample results- corn data

Analyte 1, m5 master/mp5 slave

PDS only

PDS, then 2" derivative
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New Results- Corn Data LVs
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Summary- New Results on Corn Data

NO
standardization |GLS PDS
EP [LV RMSEP [LV [RMSEP [LV
no preprocessing 1.005( 7.1] 0.217] 7.5] 0.236] 7.3
MSC after
|standardization 0.949| 5.8] 0.228] 5.3] 0.230| 5.4
SNV after
standardization 0.887| 5.6] 0.218] 5.5] 0.229| 5.6
2nd derivative after
standardization 0.781] 5.8] 0.209| 4.8] 0.224| 4.6
MSC before
standardization 0.225| 5.9] 0.280| 4.3
SNV before
standardization 0.241] 5.3| 0.230] 4.7
2nd derivative before
standardization 0.203] 4.7] 0.220( 4.5
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New Results- Corn Data RMSEP
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PARAFAC model on Corn RMSEP Results

e 4D array
« Standardization

* Preprocessing

* Master/Slave instrument pair

¢ Analyte

* 1 PARAFAC component explains 91.4% of the

RMSEP data
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Mode 1 (standardization method)

PARAFAC loadings

Mode 3 (master/slave
instrument pair)

mS/mpS m5/mp6 _mpS/m5 mpS/mp6 mpé/m5 mp8/mpS

no standardization GLs PDS

All transfers involving instrument
“m5” have higher RMSEPs
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GLS performs slightly better
on this data

Comparison of Methods on
Pseudo Gasoline Data

¢ Available data
¢ 30 samples split 20/10
e 5 analytes
¢ 2 instruments
¢ 5 Transfer samples selected
¢ Based on model inverse for PDS
* Based on PCA leverage for OSC, GLS
¢ Tested both methods on all combinations of
instrument and analyte
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Results of Previous Study on
Pseudo Gasoline Data

Performance of Methods on Pseudo-gasoline Data
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PARAFAC loadings- preprocessing

* All preprocessing
types bring slight
RMSEP improvement
* 2% derivative
brings best
improvement

* NOT much
difference between
preprocessing
BEFORE vs. AFTER
standardization!

noprepo MSCaft SNVaft 2D aft MSCbef SNV bef 2D bef
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Pseudo Gasoline Study Design

5 analytes (moisture, oil, protein, starch)

2 ways to transfer (2 instruments)

2 methods tested (PDS and GLS)

7 preprocessing options (SNV, 2nd deriv, and
MSC, before and after, or none)

140 transfers total (5x2x2x7)
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New Results for Pseudo Gasoline
Data

Ditto results from corn data here.
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Other Ways to Apply GLS

* GLS weighting may be applied directly to model
¢ Don’t have to rebuild model!
* Works well sometimes, but not always (future work)
* Downweight interferents
¢ Requires estimate of effect of interferent
¢ Image decluttering

* Upweight analyte of interest
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Conclusions 1/2

* GLS preprocessing is a simple, effective method
for eliminating spectral differences
e “designed” for correlated sampling issues
* Can be used in several ways
¢ Only one adjustable parameter
 Potential loss of net analyte signal
* PDS

« designed to account for instrument differences
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Future Work

* Complete analysis of pseudo-gasoline data

* Expand study to include

* PDS first to account for instrument differences
followed by GLS to handle sampling variance

¢ Additional Data Sets
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Usability Issues

Meta- Requires Y? | Rebuild Modifies Transfer sets | Affects net
parameters? calibration | spectra? function of analyte
model? Y? signal?
GLS |1 No Yes/No | Yes No Yes
PDS |2 No No No Yes No
OSC |3 Yes Yes Yes No Yes
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Conclusions 2/2

e GLS slightly better than PDS for corn data, PDS slightly better
than GLS for gasoline data

More sampling/scattering issues in corn data than gasoline data

* Preprocessing reduces number of LVs needed, and slightly
reduces the RMSEP (slave test data)

2nd derivative gave best improvement
For all preprocessing types studied

« no significant difference observed for preprocessing applied before vs. after
standardization

¢ All transfers involving instrument “m5” resulted in higher
prediction errors

Unique response biases vs. other two instruments studied

IGENVECTOR

4 RESEARCH INCORPORATED

Bibliography

[1] H. Martens, M. Hgy, B.M. Wise, R. Bro and P.B. Brockhof f, “GLS Preprocessing of
Multivariate Data,” submitted to J. Chemometrics, May 2001.

[2] Y. Wang, D.J. Veltkamp and B.R. Kowaski, “Multivariate Instrument
Standardization,” Anal. Chem., 63(23), pps 2750-2756, 1991.

[3] Z. Wang, T. Dean and B.R. Kowalski, “Additive Background Correction in
Multivariate Instrument Standardization,” Anal. Chem., 67(14), pps 249-260, 1995.

[4] S. Wold, H. Antti, F. Lindgren and J. Ohman, “Orthogonal Signal Correction of Near-
Infrared Spectra,” Chemo. and Intell. Lab. Sys., 44, pps 175-185 , 1998.

[5]J. Sjsblom, O. Svensson, M. Josefson, H. Kullberg and S. Wold, “An Evaluation of
Orthogonal Signal Correction Applied to Calibration Transfer of Near Infrared Spectra,”
Chemo. and Intell. Lab. Sys., 44, pps 229-244, 1998.

IGENVECTOR

RESEARCH INCORPORATED



Contact Information

Eigenvector Research, Inc.
3905 West Eaglerock Drive
Wenatchee, WA 98801
Phone: (509)662-9213

Fax: (509)662-9214

Email: bmw@eigenvector.com
Web: eigenvector.com

EEIGENVECTOR

M\J RESEARCH INCORPORATED



