Combining Instrument Standardization and Data **Preprocessing Methods:** What Methods, and What Order?

Barry M. Wise, Charles E. Miller, Robert T. Roginski, and Neal B. Gallagher Eigenvector Research, Inc. Wenatchee, WA

EIGENVECTOR

Original Abstract

Combining Instrument Standardization and Calibration Transfer Methods: What Methods, and What Order?

Note title change--we're going to look at just prepro and transfer methods at this point, not combined transfer methods

Abstract: Spectroscopic instrument differences can be mitigated by data preprocessing methods (e.g. baselining, derivitization, multiplicative scatter correction) and standardization methods (e.g. piece-wise direct standardization, orthogonal signal correction, generalized least squares weighting). Each of these methods has strengths and weaknesses in the face of different types of instrument non-idealities. Can these methods be used in combinations that are more effective than single approaches? This talk discussed how combinations of techniques can be used. Approaches are tested on 3 NIR data sets with different issues.

Outline

- · The calibration transfer problem Instrument differences, drift, environment changes
- Data sets
- Pseudo gasolineCorn
- Standardization approaches Generalized Least Squares (GLS) preprocessing
 Piece-wise Direct Standardization (PDS)
- · Preprocessing approaches
 - Multiplicative scatter correction (MSC) Standard normal variate (SNV)
- Second derivative Study Design
- · Comparison of results
- Conclusions

Reasons for Calibration Transfer

- · No two instruments identical
 - · Some calibrations depend on very small changes in data
- · Single instruments often drift
 - · Aging parts, dirt, part replacements
 - · Temperature, humidity
 - Standardization
- · New interferences in samples

Pseudo Gasoline Data

Difference Between Instruments

EIGENVECTOR

Selection of Transfer Samples

• Transfer samples should

- be "high leverage"
- span the space of differences
- · Several ways to choose
 - Hand select (based on PC scores, etc.)
 - Find high leverage in PCA
 - Find high leverage based on calibration model

EIGENVECTOR RESEARCH INCORPORATED

Difference Covariance

$$\mathbf{X}_{d} = (\mathbf{X}_{1,tr} - \overline{\mathbf{x}}_{1,tr}) - (\mathbf{X}_{2,tr} - \overline{\mathbf{x}}_{2,tr})$$

$$\mathbf{C} = \frac{\mathbf{X}_d^{\mathrm{T}} \mathbf{X}_d}{N-1}$$

Covariance to Weighting Matrix

$$\mathbf{C} = \mathbf{V}\mathbf{S}^{2}\mathbf{V}^{\mathrm{T}}$$

$$\mathbf{G} = \mathbf{V} \mathbf{D}^{-1} \mathbf{V}^{\mathrm{T}}$$

$$s_{i,i}^{-1} = \frac{1}{\sqrt{s_{i,i}^2}}$$
 $d_{i,i}^{-1} = \frac{1}{\sqrt{\frac{s_{i,i}^2}{g^2} + 1}}$

Piece-wise Direct Standardization

PDS Model

 $\mathbf{X}_1 = \mathbf{X}_2 \mathbf{F} + \mathbf{1} \mathbf{b}_{2-1}$

Pseudo Gasoline Master Before and After GLS

Orthogonal Signal Correction

- Determine factor which describes large amounts of variance in X while being orthogonal to Y
- Deflate X
- Build PLS model that predicts scores of deflation factor
- Use PLS model to estimate amount of factor to remove from new ${\bf X}$

EIGENVECTOR RESEARCH INCORPORATED

Pseudo Gasoline Difference

Comparison of Methods for Corn Data

- Available data
 - 80 samples split 60/20
 - 3 instruments
 - 4 analytes
- 10 Transfer samples selected
 - Based on model inverse for PDS
 - Based on PCA leverage for GLS
- Tested both methods on all combinations of instrument and analyte

Corn Study Design

- 4 analytes
- moisture, oil, protein, starch
- 6 ways to transfer
 - between 3 instrumets: m5, mp5, mp6
- 2 methods tested
 - PDS and GLS
- 7 preprocessing options
 - SNV, 2nd deriv, and MSC, before and after, or none
- 336 transfers total (4x6x2x7)

Issues with Meta-parameters

- GLS has only one parameter, g
- PDS
- Window width
 - Parameters for sub models (LVs or tolerance)
- OSC
 - Number of OSC LVs
 - · Tolerance of initial iterations
 - · Tolerance on reconstruction
- Number of LVs in PLS calibration models
- *Try to shown each technique in best light!*

Typical Calibration and Test Data

Results from Previous Study on Corn Data

					Pro	ediction	Instrum	ent					
	Moisture		Oil			Protein			Starch		Average		
Pre	ds MS	MP5	MPG	MS	MPS	MP6	MS	MP5	MPG	MS	MP5	MP6	
M5	0.0187	1.4166	1.5123	0.0361	0.1274	0.1568	0.1302	1.2685	1.2241	0.2077	2.0949	1.6601	
MP5	1.1693	0.1460	0.3547	0.2751	0.0685	0.1516	1.2719	0.1720	0.2782	3.5674	0.4091	0.6119	1.0052
MPS	1.0921	0.2849	0.1667	0.3148	0.1925	0.0619	0.8982	0.2403	0.1876	3.1865	0.6754	0.4031	0.1706
PD	S Standardi:	zation											
M5		0.3951	0.4571	-	0.0932	0.0755	-	0.1699	0.1549	-	0.3352	0.3710	
MP5	0.2342		0.1749	0.0576		0.0944	0.1401		0.1550	0.3455		0.3972	0.2289
MPS	0.2055	0.1601	-	0.0920	0.1035	-	0.1553	0.1770	-	0.4147	0.4290		
6 GI	S Standardi	zation IVs	hand select	ed									
EMS	·	0.1592	0,1906		0.0859	0.0952		0.1531	0.1679	-	0.3314	0.3420	
MP5	0.1291		0.1477	0.0479		0.0770	0.1722		0.2110	0.2830		0.4381	0.1831
MP6	0.1990	0.1521	-	0.0503	0.0615		0.1687	0.1570	-	0.1873	0.3473	- 1	
Ĕ au	S Standardi	zation best	over 5-81 V										
MS		0.1545	0.1897		0.0655	0.0783		0.1485	0.1502		0.3039	0.3350	
MP5	0.1248		0.1258	0.0479		0.0696	0.1448		0.1721	0.2405		0.3709	0.1662
MP6	0.1902	0.1177		0.0590	0.0753		0.1358	0.1570		0.1873	0.3316	-	
≥ _{os}	C Standardi:	zation, best	over all cas	es, 1-3 OS	C, 3-8 LVs								
M5		0.1630	0.1733	1.1	0.0516	0.0710		0.1433	0.1502		0.3002	0.3293	
MP5	0.1945	-	0.1580	0.0710		0.0739	0.1394	-	0.1988	0.2540		0.4259	0.1637
MPS	0.1455	0.1320		0.0607	0.0585		0.1568	0.1449		0.2253	0.3744		
OS	C Standardi:	zation, best	single case	, 3 OSC 5 L	.Vs								
M5		0.2218	0.2511	-	0.0835	0.0742		0.1588	0.1502		0.3250	0.3515	
MP5	0.3097	-	0.2176	0.0630	-	0.0834	0.1601	-	0.2385	0.4206	-	0.4506	
MPS	0.3299	0.1379	-	0.0525	0.1157	-	0.1684	0.2154	-	0.5119	0.4363		

EIGENVECTOR RESEARCH INCORPORATED

EIGENVECTOR RESEARCH INCORPORATED

Summary- New Results on Corn Data

	NO standardization		GLS		PDS		
	RMSEP	LV	RMSEP	LV	RMSEP	LV	
no preprocessing	1.005	7.1	0.217	7.5	0.236	7.3	
MSC after standardization	0.949	5.8	0.228	5.3	0.230	5.4	
SNV after standardization	0.887	5.6	0.218	5.5	0.229	5.6	
2nd derivative after standardization	0.781	5.8	0.209	4.8	0.224	4.6	
MSC before standardization			0.225	5.9	0.280	4.3	
SNV before standardization			0.241	5.3	0.230	4.7	
2nd derivative before standardization			0.203	4.7	0.220	4.5	

EIGENVECTOR RESEARCH INCORPORATED

New Results- Corn Data LVs

PARAFAC model on Corn RMSEP Results

- 4D array
 - Standardization
 - Preprocessing
 - Master/Slave instrument pair
 - Analyte
- 1 PARAFAC component explains 91.4% of the RMSEP data

GLS performs slightly better on this data

All transfers involving instrument "m5" have higher RMSEPs

EIGENVECTOR RESEARCH INCORPORATED

PARAFAC loadings- preprocessing

Comparison of Methods on

Pseudo Gasoline Data

- Available data
 - 30 samples split 20/10
 - 5 analytes
 - 2 instruments
- 5 Transfer samples selected
 - Based on model inverse for PDS
 - Based on PCA leverage for OSC, GLS
- Tested both methods on all combinations of instrument and analyte

Pseudo Gasoline Study Design

- 5 analytes (moisture, oil, protein, starch)
- 2 ways to transfer (2 instruments)
- 2 methods tested (PDS and GLS)
- 7 preprocessing options (SNV, 2nd deriv, and MSC, before and after, or none)
- 140 transfers total (5x2x2x7)

Results of Previous Study on Pseudo Gasoline Data Proformance of Standardization Methods on Pseudo-assoline Data

Ditto results from corn data here.

Other Ways to Apply GLS

- · GLS weighting may be applied directly to model • Don't have to rebuild model!
 - Works well sometimes, but not always (future work)
- Downweight interferents
 - · Requires estimate of effect of interferent
 - · Image decluttering
- Upweight analyte of interest

EIGENVECTOR

Usability Issues

	Meta- parameters?	Requires Y?	Rebuild calibration model?	Modifies spectra?	Transfer sets function of Y?	Affects net analyte signal?
GLS	1	No	Yes/No	Yes	No	Yes
PDS	2	No	No	No	Yes	No
OSC	3	Yes	Yes	Yes	No	Yes

EIGENVECTOR

Conclusions 1/2

- · GLS preprocessing is a simple, effective method for eliminating spectral differences
 - · "designed" for correlated sampling issues
 - · Can be used in several ways
 - Only one adjustable parameter
 - · Potential loss of net analyte signal
- PDS
 - · designed to account for instrument differences

Conclusions 2/2

- GLS slightly better than PDS for corn data, PDS slightly better than GLS for gasoline data
 - · More sampling/scattering issues in corn data than gasoline data
- · Preprocessing reduces number of LVs needed, and slightly reduces the RMSEP (slave test data)
 - 2nd derivative gave best improvement
 - · For all preprocessing types studied
 - an proprocessing types Studied no significant difference observed for preprocessing applied before vs. after standardization
- All transfers involving instrument "m5" resulted in higher prediction errors
 - · Unique response biases vs. other two instruments studied

Future Work

- · Complete analysis of pseudo-gasoline data
- Expand study to include
 - · PDS first to account for instrument differences followed by GLS to handle sampling variance
 - Additional Data Sets

H. Martens, M. Høy, B.M. Wise, R. Bro and P.B. Brockhoff, "GLS Preprocessing of Multivariate Data," submitted to J. Chemometrics, May 2001.

[2] Y. Wang, D.J. Veltkamp and B.R. Kowalski, "Multivariate Instrument Standardization," Anal. Chem., 63(23), pps 2750-2756, 1991.

[3] Z. Wang, T. Dean and B.R. Kowalski, "Additive Background Correction in Multivariate Instrument Standardization," Anal. Chem., 67(14), pps 249-260, 1995.

[4] S. Wold, H. Antti, F. Lindgren and J. Öhman, "Orthogonal Signal Correction of Near-Infrared Spectra," Chemo. and Intell. Lab. Sys., 44, pps 175-185, 1998.

[5] J. Sjöblom, O. Svensson, M. Josefson, H. Kullberg and S. Wold, "An Evaluation of Orthogonal Signal Correction Applied to Calibration Transfer of Near Infrared Spectra," Chemo. and Intell. Lab. Sys., 44, pps 229-244, 1998.

Contact Information

Eigenvector Research, Inc. 3905 West Eaglerock Drive Wenatchee, WA 98801 Phone: (509)662-9213 Fax: (509)662-9214 Email: bmw@eigenvector.com Web: eigenvector.com

#