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Hyperspectral Imaging

* Many pixels - good sampling
for exploratory analysis,
detection and classification

— rapid and non-invasive

* Good for heterogeneous samples

— although quantities to be detected may be low on a volume
basis, signal in individual pixels can be dominated by an
analyte of interest

— Good for detecting a needle in a hay stack
— wet chemistry methods can be hampered by dilution effects
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Detection Models

Compared to the statistical distribution of the
data set:

Anomaly Detection finds unusual signal in any
direction

|

[arget Detection finds signal in a specific
direction defined externally

Targeted Anomaly Detection finds signal in
~specific directions relevant to the image
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Variable 2

Principal Components Analysis

 PCA

Spectral Channel 2

Mean Vector

Variable 1
Spectral Channel 1

PCA geometry for
two variables

t,, Scores on PC 2

t;, Scores PC 1
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PCA Anomaly Detection w/ T?

2 2

* Hotelling’s T? L
DICHE S Tzzi+—2:tf+t22

— Hotelling, H, (1931) “The generalization of /’le l;
Student’s ratio,” Annals of Mathematical
Statistics,” 2(3), 360-378

“whitening”

Q. 2 ® anomalies are found
in any direction
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NIR reflectance image of a Anomaly
cellulosic swipe. Detection Example

a) 1s an anomaly apparent?

b) where 1s 1t?

c¢) if seen, can the analyte be
identified? apparent anomaly observed — what is 1t?

age of Hotelling T2 (99.83%
Image of Scores on PC 1 (97.73%), PC 2 (1.28%) & PC 3 (0.56%) Iniage ot Hoteling 1°2 (52.42%)

data set: courtesy OPOTEK, Inc., Carlsbad, CA



Image of Scores on PC 1 (97.73%), PC 2 (1.28%) & PC 3 (0.56%)

Anomaly
Detection Example

apparent anomaly observed — what is 1t?

Image of Hotelling T2 (99.83%)

Eigenvalues for Swipe_SS_1000_1730 hdr

anomaly signal is buried waaay
(~5 orders of magnitude) and
spread out between multiple factors
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Anomaly Pixels

* Most of the signal 1s “clutter”

apparent anomaly observed — what is 1t?

Image of Hotelling T2 (99.83%)

scores on PC 4 an 6

Measured data for pixels with high
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Anomaly Detection Summary

* Flexible - finds unusual signal

* Minor anomalies may be difficult to detect

— Could appear like random noise

* Doesn’t identify the signal
— Library search

* Spectra in library not relevant? Matrix, environment,...

* Additional processing may be needed for impure signal
to remove background
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Target Detection

* Aitken Estimator, Generalized Least Squares

— Alexander C. Aitken, (1935) "On Least Squares and Linear Combinations of
Observations", Proceedings of the Royal Society of Edinburgh. 55, 42-48.

anomalies are A N target signal 1s
found in any found in a specific
direction direction, s
|
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Target Detection Example

T
X = TP’ +E X=cSs +XC+E

T=XP ¢=XZs(s"Z's)

Image of Scores on PC 1 (97.73%) , PC 2 (1.28%), PC 3 (0.56%)

-1

Generalized least squares
for an RDX target spectrum
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What does

. GLSW (weighting 1/a)
“decluttering” do?
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generalized least squares weighting is a form of |
“de-cluttering” that can be used to increase inter- S 4l
c c o <
to intra-class variance where 1/a is a measure of S s
. . . . U ) i
how strong the de-weighting is applied. e
o 121
S 14t
Paradigm Shift: |
Maximize: signal-to-noise = signal-to-clutter o
Requires replicates to characterize the intra-class T scoresonPC 1 (adsy
clutter.
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Target Detection Example
"RDX on a Plate

ST ORI VT IPIN GT W Tee

RDX-onasteel plate

Image Target

File Size (pg/cm?)
PLATE S7 RDX 4cm-1 14m 1 000011678 : 120x180 16
PLATE S8 RDX 4cm-1 14m 1 000011594 ' 120x180 40
PLATE S9 RDX 4cm-1 14m 1 000011692 : 120x180 90
PLATE S8 RDX 4cm-1 31m 1 000011776 : 80x120 40
PLATE 88 _RDX - 4cm-1 50m il 000011762 . 80x120 40
PLATE 89 RDX 4dcm-1 50m y 000011734 3 80x120 90




GLS Contributions

RDX target is detected at in all images while TNT is not.
False alarms suggested in images d-f but not if residuals

are included. =;== E IGENVECTOR
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Target Detection Example
Minerals on Plate

* Rock and Minerals (ground in Nalgene cup)

* Samples: 8 inch columns, 11.3 inch rows
* Bare plywood and aluminum foil surfaces at 45° at 14 m

* Rudimentary atmospheric correction
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PCA (PC Scores Image)
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Target Detection for CaCO;,

Scores image for visualization

Iteration 1 detected 344 pixels.
Iteration 2 detected 388 pixels.

C1B145 -
Al Plate 50-70 mesl

C1B145
Wood Plate

. . . . ' .
Only CaCOs is detected (including the 50/50 mixture)! AT ElGENVECTO R
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Target Detection for Sand (510,)

-

Iteration 1 detected 377 pixels.
Iteration 2 detected 296 pixels.

200

CI1B145
Wood Plate

300

400
S0 100 150 200 250 300 50 100 150 200 250 300

Sand is detected (none in the 50/50 mixture with CaCOy).
Nontronite is a false alarm. Sericite has a minor false alarm on the wood plate.



Targeted Anomaly Detection

detection classification  quantification

Anomaly Detection yes no no
Target Detection yes yes ~yes
Targeted Anomaly Det  yes ~yes ~No

* Anomaly Detection

* Target Detection
— what about multiple targets?
— 1s the library target a match for each image?
* Targeted Anomaly Detection
— use target detection to find possible target pixels

— the use the detected pixels as target relevant for each image

* accounts for lighting changes, matrix effects, signal changes and
allows for multiple manifestations of a target’s signal
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Hidden Watermark

Dunlap Broadside printing of the Declaration of Independence

two major
sources of clutter
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Thank you Library of Congress
Meghan Wilson, Preservation Science Specialist
Fenella France, Chief of Preservation Research and Testing Division
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Watermark

colormap winter * GLSW, mean-centering = WPCA
enhanced contrast * I/a larger is stronger de-
decluttering (1/a=100) cluttering

decluttering (1/a=10) e Scores on PC 1

decluttering (a=1) * autocontrasted
declutterlng.(aZO. 1) * mean-centered & saturated at
no decluttering 17 std
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Target Detection Example

Seattle Landsat, USGS/NASA

Image of Scores on PC 1 (91.33%)

Lake Washington
- -~ *Two-target GLS
Lake Sammamish = —Target' “Iakes”
. magenta

=

i —Interference: “Puget

o Sound”

®)
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r\un
ﬂ!EIGENVECTOR
RESEARCH INCORPORATED



PCA Scores and Loadings

RGB Scoreson PC 1,2 & 3
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Blue
MidIR
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02+

oal ¢ PC 3 (2.04%)

PC 2 (6.43%)

-0.6 -

-0.8 —

Spectral Channel

the water signal is minor (it’s in PC 3)
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Target Contributions

(1)

Image of Lakes

histogram for contributions
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0.8 1

Image of Lakes (1)

> T T ‘ T T |
histogram for contributions with thresholding

0 0.2
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Intertference Contributions

Image of Puget Sound (2) Image of Puget Sound (2)

5 5
15 10 ; ; ; : 15 <10 I
histogram for contributions
ol 1 10 histogram for contributions with
thresholding
S5t 5
O L 1 1 1 0 1 Il
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MidIR

Spectral Channel

The target signals are very similar
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MidIR

Green

Lakes-Puget Sound

1 2 3 4 5 6 7
Spectral Channel

Lakes appear to have a higher signal
on the Thermal channel relative to the
Blue channel.
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Conclusions

* The examples differed are in how “signal” and
“clutter” are defined depending on the desired signal
to enhance and signal to suppress

— One man’s clutter 1s another’s target.

* Anomaly and Target Detection can be used
synergistically to find signal of interest
— signal that may be missed when used independently
— the result 1s Targeted Anomaly Detection
— very flexible approach to targeted 1image exploration
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