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Objective and Outline

• Objective

• Show that end members extracted from the off-plume can be used 

as a basis for the quantification of plume analytes

• Allows non-negativity constraints to be employed

• Show how mismatch between the plume temperature and estimator 

spectra affect the quantification error

• Remote sensing problem

• IR-SAGE (Synthetic Scene Generator)

• Quantification Algorithm

• End-Member Extraction

• Results

• Conclusions
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Remote Sensing Problem

• Remote sensing for chemical analytes can be 

split into 3 tasks:

• Detection (where is the plume?),

• Classification (what is in the plume?), and

• Quantification (how much is in the plume?).

• Interest is in quantification

• quantification is limited to concentration-pathlength 

since the actual pathlength is usually unknown

Remote Sensing
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Problem with Measured Data

• Hyperspectral images are rarely well-characterized

• There are a large number of factors influencing the 

measured radiance

• plume location, contents, quantities, temperature,

• atmosphere down- and up-welling radiance, and 

transmittance,

• ground emissivity and temperature ...

• are unknown

• so how to judge performance of algorithms?

Synthetic Data

• IR-SAGE: InfraRed - Systems Analysis in 

General Environments

• flexible synthetic scene generator (in MATLAB)

• combines physical models and measured spectra

• everything is known

• can be used to test detection, classification, and 

quantification algorithms
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Radiance Model
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How to Quantify?

• Lot’s of parameters, so ...

• split the problem into parts, and assume some 

parameters are known

• (future work)

• assume plume location is known (detection)

• assume plume analytes are known (classification)

• Assume that on-plume pixel “looks like” an 

off-plume pixel if there were no plume

• on-plume “background” lies in subspace spanning 

off-plume pixels
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Rearrange Radiance

Model for ττττp
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• Assumed we know:

• Don’t require knowledge of:

• Taylor Series, substitute known parameters
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Quantification: ELS

• Extended mixture model (extended least squares) 

which can be solved for          using least squares

• End-member extraction for background basis

• can apply non-negativity constraints
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End-Member Extraction

• Initial solution: extremes of mean centered 1-norm

• ALS with non-negativity constraints

• Sequential for “smaller” factors

• extracted 14 to 53 factors

• Provides a basis on which non-negativity constraints 

can be used in quantification

T
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End-Member Extraction
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Quantification: GLSI

• ELSI  predictions were good for narrow-featured 

spectra but not as good for broad-featured spectra

• GLS, after the last ELSI iteration, resulted in 

better estimates for broad-featured
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Algorithm Testing

• Image 128x128 x 536 (800 to 1335 cm-1)

• 1, 2, 4, 8, 128 different background materials εg

• temperature variability, Tp-Tg (12 to 32 K)

• plume 16x128 pixels

• plume spectra at 298 K, estimator at 298 K: matched

• plume spectra at Tp,       estimator at 298 K: unmatched

• 5 analytes in the plume, 9 to 26 ppm·m

• atmospheric variability

• 0.112 cm-1 res, 0.06 cm-1 spacing, convoluted to 1 cm-1

Unconstrained vs. Constrained
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Matched vs. Unmatched

• temperature mismatch ⇒ higher estimation error
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Model Bias

• Estimates of c tend to 

have a low bias due to 

model assumptions

• Taylor series approx.

• Temperature mismatch 

can result in a high 

bias that partially 

offsets the model bias
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Conclusions

• End member extraction can be used to obtain a 

basis on which non-negativity constraints can be 

applied

• Temperature mismatch between the plume 

temperature and the spectrum used for estimation 

generally results in higher estimation error
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Summary of Assumptions

• plume location is known*

• plume analytes are known*

• for off-plume    ,** ,* and    * are known

• is known*

• lies in subspace spanned by off-plume

uL up

aτ
bkgL

bkgL
bkg

P

* same assumption as present state-of-the-art
** present state of the art assumes     is knowng

T

p
T

Scenarios
side-looking down-looking



13

Noise Model

atmospheric up-welling

spectrometer internal noise (NESR)
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Quantification

• Examples for down-

welling scenarios

• can be used for side-, up-

• Assume:

• we know where the 

plume is (detection), and

• we know what is in the 

plume (classification)

off-plume

on-plume
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Not all terms are known...

• Approximate

• isolate 

• and assume

• yielding
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Algorithm Testing
• Image 128x128 x 536 (800 to 1335 cm-1)

• 1, 2, 4, 8, 128 different background materials εg

• Tg (284 to 300 K), Tp-Tg (12 to 32 K)

• Plume 16x128 (9 to 26 ppm·m)

• 1 to 4 analytes in the plume

• US 76 Standard Atms

• 101 different FASCODE realizations

• 1 % T and 3 % C variation w/in each layer

• H20, CO2, O3, N2, CO, CH4, O2, and 25 others

• All spectra

• 0.112 cm-1 res, 0.06 cm-1 spacing

• convoluted to 1 cm-1
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“Mathematical Construct”

background plume

off-plume

on-plume

Results: 4 Dissimilar Analytes
Plume: NH3, N-Butanol, F113, CH4

Background: 128 εg
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Results: 4 Dissimilar Analytes
Plume: NH3, N-Butanol, F113, CH4
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Predictions for NH3 - GLSI

RMSEP = 1.02 ppm·m

Predictions for NH3 - SOA

RMSEP = 6.3 ppm·m

Results: GLSI / SOA

• Compare GLSI to State-of-the-Art (SOA)

• For 4-analyte plume of dissimilar analytes

RMSEP (ppm·m)

Analyte GLSI SOA

NH3 1.0 6.3

NBUTANOL 16 69

CH4 39 49

F113 1.0 8.3
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Results: Num. of Backgrounds

• Compare GLSI vs number of backgrounds

• For 4-analyte plume of dissimilar analytes

RMSEP (ppm·m) Number of Backgrounds

Analyte 128 8 4 2 1

NH3 1.0 0.85 0.85 0.93 0.94

NBUTANOL 16 4.7 3.4 3.9 3.9

CH4 39 32 32 36 38

F113 1.0 0.65 0.63 0.67 0.66

Estimation vs. NAS
• Net Analyte Signal accounts for spectral 

modification and number of basis vectors in Pbkg
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