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ILS to CLS: Synergistic Regression Modeling for Improved Control and Interpretability 
Neal B Gallagher, Eigenvecter Research, Inc. 
 
Inverse least squares (ILS) models such as partial least squares and principle components 
regression are popular regression tools for chemometrics modeling. A major reason for 
this popularity is that extensive infrastructure has been developed to make model 
identification fast and easy. Additionally, statistical diagnostics provide tools to develop 
useful models for exploratory analysis and quantification tasks. However, although much 
work has gone into developing tools for interpretation of ILS models, classical least 
squares (CLS) models are superior for interpretation. CLS also provides more control 
during model identification and application because the model form is amenable to 
constraints that incorporate known physics and chemistry. Unfortunately, identification of 
CLS models is often more difficult than for ILS models – a property often attributed to 
interference signal present in measurements. This talk will show that the advantages of 
ILS and CLS can be used synergistically resulting in models that provide enhanced 
diagnostics and interpretability. Two examples typically modeled using ILS will be 
shown. 
 



11/20/17	

2	

Booth 72 
Gallagher, SciX, Sep 18-23, 2016 

Summary 

  Demonstrate the theory and practice of using 
inverse least squares (PLS and PCR) with 
classical least squares methods (CLS and ELS) 

  PLS & PCR are fast and easy to identify 
  difficult to control, difficult to interpret and can be 
confused by coincidental correlation 

  CLS & ELS can be difficult to identify 
  Extended Least Squares (extended mixture model) 
  easy to add what we know via constraints, easy to 
interpret shows if coincidental correlation is present 
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y = Xb

X   is the predictor (e.g., measured spectra)
y   is the predictand (e.g., concentration, univariate)
b   is the regression vector (univariate)

Partial Least Squares (PLS) and 
Principal Components Regression (PCR) 

Y = XB Multivariate Y is the more general case. 

Inverse Least Squares 

B =W TTT( )−1TTY
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T = XW
T are scores (Y is in column space of T). 
W are weights for PLS and loadings for PCR 
(B is in the column space of W). 

Y T⊥
⎡
⎣

⎤
⎦ = X B W⊥

⎡
⎣

⎤
⎦

X = Y T⎡⎣ ⎤⎦ S P⎡⎣ ⎤⎦
T

OPLS 

ELS 

ILS to ELS 

… rearrange the variance... 

Y = XB
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A is a diagonal penalty factor. Orthogonality condition 
on P retains good mathematical conditioning. 

Very good estimates of Y and T are available from PCR. 

Y and S are often non-negative. 

ELS Objective Function 
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Why is this Important? 
  Inverse least squares methods like PCR and PLS 
are fast and easy to identify 
  Infrastructure and statistics are well defined 
  Interpretability can be difficult (B are not spectra!) 
  Many constraints for B don’t make physical sense 

•  non-negativity and smoothness aren’t generally applicable 
•  this hampers including physical knowledge into the objective 

function 
  ILS provides very good guesses for Y and T 

•  initial solutions for ELS 

Y T⊥
⎡
⎣

⎤
⎦ = X B W⊥

⎡
⎣

⎤
⎦
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Why is this Important 

  Forward least squares methods like CLS and 
ELS can be more difficult to identify 
  Infrastructure is less well developed 
  Can include more of what we know via constraints 
during model identification and application 

  Interpretability is as good as it gets (S are spectra!) 
•  allows iterative model identification because the 

identification process teaches about the problem 

X = Y T⎡⎣ ⎤⎦ S P⎡⎣ ⎤⎦
T
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NIR: Wheat Protein and Moisture 
  Hard red winter wheat ground 
  calibration and validation sets 
measured at different times 
 Cary-14 spectrometer system, 1000 – 
2598.4 nm  at 1.6 nm intervals,  3 nm 
resolution 
 Protein by Kjeldahl, each sample 
measured 16 times, averaged 
•  Estimated Standard Error of Laboratory, 

0.14% protein for the averaged results 
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Info courtesy D. Hopkins. 
Data courtesy P. Williams and K. Norris 
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Error in the Reference Method 
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Every measurement has an error. 
The reference method has an error. 
How big is it? 
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Scores and 
Weights 
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The regression vector, b, is a linear 
combination of the weights, WK. 
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Performance Comparison 

         Protein (%)           Moisture (%) 
Model  RMSEC RMSECV RMSEP   RMSEC RMSECV RMSEP 
ELS1   0.13     NA  0.18    0.067    NA  0.079 
PCR2   0.15   0.17  0.29    0.054  0.063 0.065 
PLS12  0.14   0.16  0.28   
PLS22  0.14   0.16  0.28    0.052  0.061 0.066 

Outliers (two) not removed, no serious attempt at model 
optimization. 
Are the results significantly different based on what is 
known about the reference error? 
1used MSC only (it was a force fit through zero) 
2used MSC+mean-centering 
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Interpretation 
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Interpretation 
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PLS regression vector for protein 
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ELS spectra for protein and moisture 

ELS spectra identified using multivariate 
curve resolution with soft equality constraints 

H-bonded overtones 

H2O combination 

CH overtones 
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Factor 4 correlates 
with protein 
(colorby protein) 

Factor 5 shows sharp bands 

Interferences can be interpreted too… 
and the estimate of the factors might be 
tuned up with additinal constraints 
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SFCM Data Example 
  Estimate level in a slurry fed ceramic melter*

  measurements are not spectra 
•  measured 20 

temperatures 
(thermocouples) in two 
vertical thermal wells 

•  thermocouples near the 
surface vary with level

level 

temperatures 

*Wise BM, Gallgher NB, Bro R, Shaver JM, Windig W, Koch 
RS, PLS_Toolbox 3.5, for Use with MATLABTM, Eigenvector 
Research, Inc. 2004. 
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Performance Comparison 

Demonstration of ELS/CLS for engineering 
variables. 
Mean-Centering for both PLS and ELS 
3 factors for PLS and ELS 

      Level (in)   
           PLS  ELS 
RMSEC   0.106  0.114 
RMSECV  0.113  0.118 
RMSEP   0.138  0.145 
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Constraints 

  Constraints can be employed on both C and S 
during ELS model identification 
  e.g., non-negativity, smoothness, priors, time-
series lagging, etc… 

  … and on C during model application 
  Allows imposing chemical and physical 
knowledge into the model identification 
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Non-Continuous Banding for 
Smoothness Constraint 

    0.2857 
   -0.1429 
= -0.2857 
   -0.1429 
    0.2857 5 point, 2nd order polynomial, 2nd derivative 

careful w/ “end-effects” 
(show concept only - calibration results not shown} 
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Conclusions 

  Inverse least squares methods like PCR and 
PLS are fast and easy to identify 
  Interpretability can be difficult (B are not spectra!) 

  Forward least squares methods like CLS and 
ELS allow more control over model 
identification 
  Interpretability is as good as it gets (S are spectra!) 

ILS or CLS ? ILS + CLS ! 


