Depth Profile Characterization of Layered Materials Using ToFSIMS Hyperspectral Imaging Coupled with Sputtering

D. Graham¹, N.B. Gallagher², M. Linford³

¹Molecular Engineering & Sciences Institute, University of Washington
²Eigenvector Research, Inc.
³Department of Chemistry and Biochemistry, Brigham Young University

Abstract IASIM16

DEPTH PROFILE CHARACTERIZATION OF LAYERED MATERIALS USING TOFSIMS HYPERSONAL IMAGING COUPLED WITH SPUTTERING

D. Graham¹, N.B. Gallagher², M. Linford

¹ Molecular Engineering & Sciences Institute, University of Washington, 3946 W. Stevens Way NE, Seattle, WA 98195 USA
² Eigenvector Research, Inc., 160 Gobblers Knob Lane Manson, WA 98831 USA, nealg@eigenvector.com
³ Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, USA

Key Words: ToFSIMS, depth profiling, hyperspectral, PCA, MCR

Time-of-Flight Secondary-Ion-Mass Spectroscopy (ToFSIMS) is a useful hyperspectral imaging tool for characterization of surfaces. When coupled with sputtering, images can be acquired at a sequence of depths resulting in a time-series of images that can be used to characterize a material at a succession of depths several nanometers deep. ToF-SIMS measurements were acquired from a bilayer of C3F6 and Poly(N-isopropylacrylamide) (PNIPAM) plasma polymers on a silicon wafer at 50 sputter depths (corresponding to approximately 200 nm) and the resulting images were analyzed collectively using principal components analysis (PCA), maximum autocorrelation factors (MAF) and multivariate curve resolution (MCR). The results of the different techniques were consistent between each other and could be easily interpreted from a chemical and physical perspective. This was largely attributed to the high selectivity of the measurement technique. Although any of the three data analysis methodologies could be employed satisfactorily in practice, PCA and MCR provided the most chemically meaningful and easy to interpret results and showed clear evidence of what material was present at each layer and identified analytes not easily identified using traditional univariate analysis of the data. For example, Figure 1 shows MCR Factor 3 at all sputter depths, d, indicating it is associated with the top layer and Figure 2 shows the MCR contributions for six factors. The different layers are clearly apparent in Figure 2.
Secondary Ion Mass Spectrometry (SIMS)

The primary ion source is rastered over the sample surface to obtain a hyperspectral image.

Sputtering → Depth Profiling

Sputtering “peels off” a layer exposing a new surface for hyperspectral imaging.
ToF-SIMS Imaging & Depth Profiling

- The primary beam is scanned over the surface
 - mass channel spectrum (time of flight) at each pixel
 - 256x256 hyperspectral image of the surface
- Depth profiling is achieved by sputtering
 - multiple hyperspectral images at 50 different depths (~200 nm depth profile)
 - 256x256x406 x 50 reduced to 85x85x300x50
 - use mean of 3x3 windows, remove edge pixels, remove highest mass channels

Data Analysis

- Principal Components Analysis (PCA)
 - orthogonal scores / loadings
- Maximum Autocorrelation Factors (MAF)
 - directly related to whitened PCA to focus on spatially autocorrelated signal
- Multivariate Curve Resolution (MCR)
 - attempt to obtain pure component, non-negative scores and factors that are more physically interpretable
- Use Poisson scaling and 1-norm
 - allows lower signal (higher mass channels) to influence the model
Gallagher, IASIM, July 3-6, 2016

Example Image

1 to 10
11 to 20
21 to 30
31 to 40
41 to 50

Top

Bottom

d

High Score

Low Score

PCA

Image of Scores on PC 1 (59.03%) (1)

MAF

Image of Scores on PC 1 (42.67%) (1)

MCR

Image of Scores on Comp 1 (55.70%) (1)

Si Layer

PCA

MAF

MCR

44.98 SiO,
46.97 SiF?

27.97 Si

Mass

Gallagher, IASIM, July 3-6, 2016
PCA

Image of Scores on PC 2 (8.93%) (2)

MAF

Image of Scores on PC 2 (13.37%) (2)

MAF Factor 2 includes Top and Middle Layers

MCR

Image of Scores on Comp 2 (8.76%) (2)

PCA

Image of Scores on PC 4 (4.39%) (4)

PCA Factor 4 is the Top Layer

MAF

Image of Scores on PC 3 (13.33%) (3)

MAF Factor 3 includes Bottom and Middle Layers

MCR

Image of Scores on Comp 3 (4.44%) (3)

MCR Factor 3 is the Top Layer
Mean Score vs Sputter Time (depth)

MCR Factors 4, 5 & 6

Image of Scores on Comp 4 (7.31%) (4)

Gallagher, IASIM, July 3-6, 2016
Conclusions

Results are consistent across analysis methods PCA, MAF & MCR. Observed differences are attributable to different objective functions.

- PCA maximizes variance and retains orthogonal scores & loadings. Easy to use and reproduce. Interpretability of results attributed to high selectivity in the ToF-SIMS measurements.
- MAF maximizes variance relative to first spatial difference and retains orthogonal scores & “unwhitened” loadings. Easy to use. Interpretability suffered in this example due to rotational ambiguity.
- MCR finds end-members satisfying non-negativity. Can take effort to obtain good results but ease in this example attributed to high selectivity in the ToF-SIMS measurements. Most easily interpreted attributed to non-negativity (and non-orthogonality of scores & loadings).