Multivariate Curve Resolution Applied to Infrared Reflectance Measurements of Soil Contaminated with Organic Analyte

NIR 2005, April 10-15, 2005, Auckland, New Zealand

Neal B. Gallagher nealg@eigenvector.com Eigenvector Research, Inc., Manson, WA USA Thomas A. Blake, Paul L. Gassman Pacific Northwest National Laboratories Richland, WA USA

Objective

- Can IR reflectance spectroscopy be used to detect low vapor-pressure organic analytes on soil?
 - environmental, monitoring for compliance
- Strategies for measurement and data analysis depend on how the spectra of organic analytes manifest on soil
- Use MCR to extract estimates of liquid spectra measured on soil contaminated with organic analyte

Multivariate Curve Resolution

- MCR is a method for extracting estimates of pure spectra and concentrations from measured spectra
 - often used for exploratory analysis when spectra and concentrations are unknown
 - Literature filled with examples from evolving data • LC-MS, GC-NIR, GC-GC ...
 - Many newer examples include multivariate images
 Image Mid-IR, NIR, UV-Vis, Raman, Remote Sensing ...

Why MCR?

- The MCR model is based on physics/chemistry and results are often easily interpretable
 - can be used for quantification with appropriate constraints
- Can often extract spectra from complex measurements
 - some spectra are for analytes that may never exist in a pure state making direct measurement impossible
- Good selectivity required for unique estimate
 - rotational, multiplicative ambiguity
 - many types of constraints used to obtain a unique estimate

MCR of Reflectance Measurements

- MCR used to examine analyte absorbed onto two different soils (Quincy and League)
 - are the extracted spectra different from liquid spectra?
 - can the results be used to help define strategies for detection and classification?
- Difficult problem because of scattering artifacts when measuring soils! And...
- atmospheric constituents (H₂O and CO₂) are also present!

Typical MCR Model

• Based on the classical least squares (CLS) model, attempt to estimate C and S given X:

 $\mathbf{X} = \mathbf{C}\mathbf{S}^T + \mathbf{E}$

- X MxN measured responses,
- C MxK pure analyte contributions,
- **S** NxK pure analyte spectra, and
- **E** *M*x*N* residuals.

MCR Algorithms

- Most popular algorithms uses an alternating constrained least squares procedure (easy to code)
 - Non-negativity on C and S is most common
- Other algorithms
 - Geometric approach (e.g. N-FINDR, SIMPLSMA, DISTSLCT)
 - often fast, good first guess but doesn't solve problem in least squares sense, difficult to include many types of constraints
 - Gauss-Newton, Levenberg-Marquardt (PMF, ICE, dGN)
 - typically not as fast as ALS, use penalty functions or Lagrangian multiplier methods, ~easy to modify to include new constraints

MCR Decomposition

C≥0; **S**≥0

Alternating Least Squares

Extended Mixture MCR Model

 $\mathbf{X} = \begin{bmatrix} \mathbf{C}_{Chem} & \mathbf{C}_{Atm} & \mathbf{C}_{Soil} \end{bmatrix} \begin{bmatrix} \mathbf{S}_{Chem} & \mathbf{S}_{Atm} & \mathbf{S}_{Soil} \end{bmatrix}^T + \mathbf{E}$

- \mathbf{C}_{Chem} MxK_{C} pure analyte contributions
- \mathbf{C}_{Atm} MxK_s atmosphere analyte contributions
- \mathbf{C}_{Soil} $M \mathbf{x} K_R$ soil scattering contributions
- \mathbf{S}_{Chem} Nx K_{C} pure analyte spectra
- \mathbf{S}_{Atm} NxK_s atmosphere analyte spectra, H₂O & CO₂
- \mathbf{S}_{Soil} Nx K_R soil scattering "spectra"

Also Works for 2nd Derivative Spec

 2^{nd} derivative adds selectivity, but **S**" are not ≥ 0

$$\mathbf{X}'' = \begin{bmatrix} \mathbf{C}_{Chem} & \mathbf{C}_{Atm} & \mathbf{C}_{dSoil} \end{bmatrix} \begin{bmatrix} \mathbf{S}''_{Chem} & \mathbf{S}''_{Atm} & \mathbf{S}''_{Soil} \end{bmatrix}^{T} + \mathbf{E}$$

- \mathbf{C}_{Chem} $M \mathbf{x} K_C$ pure analyte contributions
- \mathbf{C}_{Atm} MxK_s atmosphere analyte contributions
- \mathbf{C}_{dSoil} MxK_{dR} soil scattering contributions
- \mathbf{S}''_{Chem} Nx K_{C} pure analyte 2nd derivative spectra
- \mathbf{S}''_{Atm} NxK_s atmosphere analyte 2nd derivative spectra, H₂O & CO₂
- \mathbf{S}''_{Soil} Nx K_{dR} soil scattering 2nd derivative "spectra"

How to get S_R ?

- S_R is a sub-space that spans scatter
 - measure multiple reflectance spectra of soil samples that do not contain analyte $\rightarrow \mathbf{X}_R$
 - perform typical MCR on scatter data

$$\mathbf{X}_R = \mathbf{C}_{R0} \mathbf{S}_R^{\mathrm{T}} + \mathbf{E}$$

- use \mathbf{S}_R to characterize scatter
- $\mathbf{S''}_{R}$ is a sub-space that spans scatter
 - use mean $\mathbf{X''}_R$ to characterize 2nd derivative scatter

Soil/Analyte Samples

- League Soil (44% clay, 42% silt, 14% sand)
- Quincy Soil (7% clay, 17% silt, 76% sand)
- Analyte: Dibutyl phosphate in 2-Methyl Butane
 - 0, 10-600 mM dripped onto soil sample
 - 2 MB highly volatile, evaporates quickly
 - measure spectra w/ and w/o dry-N₂ purge
 - sample (DBP concentration) randomized

Conclusions 1/2

- Factor 1
 - increases and "saturates" (consistent w/ EMSC results)
 - C-H in 2800-3000 cm⁻¹ similar to liquid, but not identical
 - increase in broad features in 1500-2800 cm⁻¹
- Factor 2
 - present only at low concentrations
 - for Quincy (~sand), C-H increasing faster than broad features
- major peak at 1032 cm⁻¹ in liquid spectra missing

Conclusions 2/2

- Some differences between liquid spectra and spectra on soil
 - some minor (e.g. 2800-3000) some major (1032 cm⁻¹)
 - spectra are slightly different <100 mM compared to those observed >100 mM
- Uncertain as to physical/chemical cause for differences, additional study required
- Helps to develop sensing strategies
 - e.g. pre-processing approaches

