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Objective Objective 

• Can IR reflectance spectroscopy be used to detect 
low vapor-pressure organic analytes on soil?

• environmental, monitoring for compliance

• Strategies for measurement and data analysis 
depend on how the spectra of organic analytes 
manifest on soil

• Use MCR to extract estimates of liquid spectra 
measured on soil contaminated with organic 
analyte
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Multivariate Curve ResolutionMultivariate Curve Resolution

• MCR is a method for extracting estimates of pure 

spectra and concentrations from measured spectra

• often used for exploratory analysis when spectra and 

concentrations are unknown

• Literature filled with examples from evolving data

• LC-MS, GC-NIR, GC-GC …

• Many newer examples include multivariate images

• Image Mid-IR, NIR, UV-Vis, Raman, Remote Sensing ...

Why MCR?Why MCR?

• The MCR model is based on physics/chemistry and 

results are often easily interpretable

• can be used for quantification with appropriate constraints

• Can often extract spectra from complex measurements

• some spectra are for analytes that may never exist in a pure 

state making direct measurement impossible

• Good selectivity required for unique estimate

• rotational, multiplicative ambiguity

• many types of constraints used to obtain a unique estimate
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MCR of Reflectance MeasurementsMCR of Reflectance Measurements

• MCR used to examine analyte absorbed onto two 

different soils (Quincy and League)

• are the extracted spectra different from liquid spectra?

• can the results be used to help define strategies for detection 

and classification?

• Difficult problem because of scattering artifacts when 

measuring soils! And...

• atmospheric constituents (H2O and CO2) are also 

present!

How to handle scattering?How to handle scattering?
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Typical MCR ModelTypical MCR Model

• Based on the classical least squares (CLS) model, 

attempt to estimate C and S given X:

  x   measured responses,

  x   pure analyte contributions,

  x   pure analyte spectra, and

  x   residuals.
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MCR AlgorithmsMCR Algorithms

• Most popular algorithms uses an alternating 

constrained least squares procedure (easy to code)

• Non-negativity on C and S is most common

• Other algorithms

• Geometric approach (e.g. N-FINDR, SIMPLSMA, DISTSLCT)

• often fast, good first guess but doesn’t solve problem in least 

squares sense, difficult to include many types of constraints

• Gauss-Newton, Levenberg-Marquardt (PMF, ICE, dGN)

• typically not as fast as ALS, use penalty functions or Lagrangian

multiplier methods, ~easy to modify to include new constraints
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MCR DecompositionMCR Decomposition

X C ST E

+=

C≥0; S≥0

Alternating Least SquaresAlternating Least Squares

set i=0; initialize with known spectra S0

estimate Ci+1 from X and Si subject to C≥0

estimate Si+1 from X and Ci+1 subject to S≥0

i=i+1; calculate E = X – Ci+1 Si+1
T

test for 

convergence
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Extended Mixture MCR ModelExtended Mixture MCR Model
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How to get How to get SSRR??

• SR is a sub-space that spans scatter

• measure multiple reflectance spectra of soil samples that 

do not contain analyte → XR

• perform typical MCR on scatter data

XR = CR0SR
T + E

• use SR to characterize scatter

• S″R is a sub-space that spans scatter

• use mean X″R to characterize 2nd derivative scatter

MCR: 2MCR: 2--

BlockBlock

X C ST
E

+=

X″ Cd
S″T

Ed

+=

C, Cd≥0

CdChem=CChem

CdAtm=CAtm

S≥0

SS, S″S constrained to H2O and CO2

SR, S″R constrained to estimated subspace
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ALS w/ 2 ALS w/ 2 

BlocksBlocks
set i=0; initialize S0=[ SC,0 SS,0 SR ] , CdR,0=1

est Ci+1 from X and Si w/ C≥0

est Si+1 from X and Ci+1 w/ S≥0 w/ SR, SS constrained

calculate E = X – Ci+1 Si+1
T

test for 

convergence

C″C,i =CC,i+1; C″S,i =CS,i+1

est S″i+1 from X″ and C″i+1 w/ S″R, S″S constrained

est C″i+1 from X″ and S″i+1 w/ C″≥0

CC,i+1 =C″C,i+1; CS,i+1 =C″S,i+1

Soil/Analyte SamplesSoil/Analyte Samples

• League Soil (44% clay, 42% silt, 14% sand)

• Quincy Soil (7% clay, 17% silt, 76% sand)

• Analyte: Dibutyl phosphate in 2-Methyl Butane

• 0, 10-600 mM dripped onto soil sample

• 2 MB highly volatile, evaporates quickly

• measure spectra w/ and w/o dry-N2 purge

• sample (DBP concentration) randomized
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Conclusions 1/2Conclusions 1/2

• Factor 1

• increases and “saturates” (consistent w/ EMSC results)

• C-H in 2800-3000 cm-1 similar to liquid, but not identical

• increase in broad features in 1500-2800 cm-1

• Factor 2

• present only at low concentrations

• for Quincy (~sand), C-H increasing faster than broad features

• major peak at 1032 cm-1 in liquid spectra missing

Conclusions 2/2Conclusions 2/2

• Some differences between liquid spectra and 

spectra on soil

• some minor (e.g. 2800-3000) some major (1032 cm-1)

• spectra are slightly different <100 mM compared to 

those observed >100 mM

• Uncertain as to physical/chemical cause for 

differences, additional study required

• Helps to develop sensing strategies

• e.g. pre-processing approaches


