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Objective

• Remote sensing for chemical analytes can be split 

into 3 tasks:

• Detection (where is the plume?),

• Classification (what is in the plume?), and

• Quantification (how much is in the plume?).

• Interest is in quantification

• quantification is limited to concentration-pathlength 

since the actual pathlength is usually unknown

Scenarios
side-looking down-looking
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IR-SAGE

• Hyperspectral images are rarely well-characterized

• plume location, contents, and concentration-pathlength 

are unknown

• background, atmospheric variability, ground 

temperature, and plume temperature are unknown

• IR-SAGE: InfraRed - Systems Analysis in 

General Environments

• flexible synthetic scene generator (in MATLAB)

• everything is known

• can be used to test detection, classification, and 

quantification algorithms
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Noise Model
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Quantification: Setup

• Examples for down-

welling scenarios

• can be used for side-, up-

• It is assumed that:

• we know where the 

plume is (detection), and

• we know what is in the 

plume (classification)

off-plume

on-plume
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Quantification: Setup

• Rearrange radiance equations for plume 

transmittance and substitute

• result is

• where       is what an on-plume pixel would look 

like in the absence of plume (i.e. it should look 

like an off-plume pixel)
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Quantification: Setup

1) Approx. with respective means from 

the off-plume 

2) Assume      is known

• previous work assumed that we know

3) Multiply each spectra by the denominator term

to yield
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Quantification: ELS

1) Extended Least Squares (ELS)

• assume that        lies in the sub-space spanned by 

the off-plume pixels

2) Extended mixture model

• which can be solved for          using least squares

• estimates tend to be ~biased so what else can be 

done?
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Quantification: ELSI

• In  ELS, estimates of are often of little interest

• In this case, it provides an estimate of       behind 

the plume!

• The equation is non-linear in the background radiance  

i) re-estimate the denominator term

( ) ˆ( ) ( )
up T

i a p u i bkgd B T Lυ τ υ= + − t P

bkg
L

[ ]1

T

i i bkg on+
  = c t S P L�

( )T

i on bkgL Lυ = −cS�

ˆ
it



7

Quantification: GLSI

• ELSI  predictions were great for narrow-featured 

spectra but not as great for broad-featured spectra

• The GLS weighting, after the last ELSI iteration, 

resulted in ~good estimates for broad-featured
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Summary of Assumptions

• plume location is known*

• plume analytes are known*

• for off-plume    ,** ,* and    * are known

• is known*

• lies in subspace spanned by off-plume

uL up

aτ
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bkg

P

* same assumption as present state-of-the-art
** present state of the art assumes     is knowng

T

p
T
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Algorithm Testing
• Image 128x128 x 536 (800 to 1335 cm-1)

• 1,2,4,8,128 different background materials εg

• Tg (284 to 300 K), Tp-Tg (12 to 32 K)

• Plume 16x128 (9 to 26 ppm·m)

• 1 to 4 analytes in the plume

• US 76 Standard Atms

• 101 different FASCODE realizations

• 1 % T and 3 % C variation w/in each layer

• H20, CO2, O3, N2, CO, CH4, O2, and 25 others

• All spectra

• 0.112 cm-1 res, 0.06 cm-1 spacing

• convoluted to 1 cm-1

“Mathematical Construct”

background plume

off-plume

on-plume
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Results: 4 Dissimilar Analytes
Plume: NH3, N-Butanol, F113, CH4

Background: 128 εg
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Results: 4 Dissimilar Analytes
Plume: NH3, N-Butanol, F113, CH4
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Results: GLSI / SOA

• Compare GLSI to State-of-the-Art (SOA)

• For 4-analyte plume of dissimilar analytes

RMSEP (ppm·m)

Analyte GLSI SOA

NH3 1.0 6.3

NBUTANOL 16 69

CH4 39 49

F113 1.0 8.3

Results: Num. of Backgrounds

• Compare GLSI vs number of backgrounds

• For 4-analyte plume of dissimilar analytes

RMSEP (ppm·m) Number of Backgrounds

Analyte 128 8 4 2 1

NH3 1.0 0.85 0.85 0.93 0.94

NBUTANOL 16 4.7 3.4 3.9 3.9

CH4 39 32 32 36 38

F113 1.0 0.65 0.63 0.67 0.66
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Estimation vs. NAS
• Net Analyte Signal accounts for spectral 

modification and number of basis vectors in Pbkg
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Conclusions

• IR-SAGE synthetic hyperspectral images

• highly flexible code

• testing and comparing algorithms

• Iterative quantification uses ELS and GLS

• removes many of the biases in the SOA and

• with fewer required assumptions

• Quantification strongly dependent on NAS

• scenario specific (background, atms variability, 

temperatures)
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Future Work

• develop detection (plume location) algorithms

• develop classification (plume analyte 

identification) algorithms

• obtain estimates of off-plume    ,     , anduL up

a
τ p

T
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