
EVRI-thing You Need to Know
About Deploying Models with

Model_Exporter

Bob Roginski
Eigenvector Research, Inc.

Manson, WA USA

Why Deploy Models?
Numerous objectives for models:
• Understand processes from relevant measurements
• Troubleshoot issues
• Characterize interactions
• Use for future events or measurements
• Often times – greatest rate of return
• Successful implementation requires:

• models that are robust over time
• an effective means of updating them when necessary

Applying A Model
In simplest terms the process of applying a model to new data is
akin to following a recipe
• numerical parameters, new data ó ingredients
• mathematical operations ó steps

Model_Exporter
Model_Exporter creates a file that contains:
• Numerical values and (simple) mathematical steps needed to

apply a preprocessing and model to new data
• Translation allows very fast model application
• Results include typical model outputs:

Predictions, scores, diagnostics, contributions
• Output file can be interpreted in a number of different

environments and integrated into 3rd party applications.

Methods & Outputs
Model_Exporter supports a wide variety of
• Model types
• Preprocessing methods

Outputs
• Model specific
• Up to the user which to use

x is a single new sample
Autoscale: Need means and standard deviations of variables
Autoscale operations:
x = (x – m) ./ sd

PCA: Need loads and tconbasis
PCA script operations:

scores = x * loads
Tcon = scores * tconbasis
Xhat = scores * loads’
…etc.

Example: PCA with Autoscale
Preprocessing

Constants from
the model:
m
sd
loads
tconbasis
reslim
tsqlim

Example: ARCH Data Set
• Native American artifacts
• Well known data set of obsidian samples from four known quarries*

Samples of unknown origin
• XRF measurements of 10 different metals

• PCA model built on samples of known origin
• export to .m

• archPCA.m

• export to .py
• archPCA.py

*Anal. Chem.; 1972; 44(13); 2176-2180

Data Storage Format

Excluded Variables
• Two options
• compressed

• archPCA_NoY_comp.m

• placeholders
• archPCA_NoY_full.m

• Responsibility – error trapping
• More onus on the developer

XML Format
• Self-describing text file containing
• parameters
• operations

• Structurally “similar” to .m file
• Same names used for operations
• But . . .

Deployment Scenarios
• .m format
• use natively in Matlab without the need for additional toolboxes

• protect the content by p-coding

• use in “Matlab-like” platforms such as Octave
• some minor code modifications may be necessary

• LabView
• MathScript Node

• compile .m code directly using Matlab Compiler
• create C code for compilation using Matlab Coder

Deployment Scenarios cont’d
• .py format
• take advantage of the

• user interfaces available to expedite workflow
• abundance of preprocessing tools

in PLS_Toolbox/Solo to build your model

• export and deploy in Python

Deployment Scenarios cont’d
• XML format
• useful for embedded platforms
• supplied interpreters

• Java
• .NET

Some Metrics (C#)
Thanks Donal O’Sullivan!
• 1000 cycles

– worst case => create new object instance and import text file of test data
– improved case => create object instance and test data once, loop over object.apply()

• PCA model
– 10 variables, autoscale
– w.c => 0.970 s
– i.c. => 0.002 s

• PLS model
– 401 variables, mean centering
– w.c. => 4.800 s
– i.c. => 0.005 s

• PLS model
– 700 variables, MSC, GLS weighting, mean centering
– w.c. => 4.800 s
– i.c. => 0.006 s

Updating Models Without Having to
Recompile Code

• .m file format
• feasible if using binary format to store parameters

• XML format
• more flexible

Calibration Transfer

Model_Exporter supports
- PDS
- DWPDS
- DS
- SST

In Closing
Model_Exporter
• provides a means to export your model in a simple form to a

number of target formats
–Matlab .m
– Python .py
– XML

• interpreters for Java and C# available

• flexibility for the deployment specialist

Comparing Solo_Predictor and
Model_Exporter

• Time:
– Solo_Predictor is slower to return results because of socket overhead but response can include

predictions for many samples. ~0.4 seconds per call

– Model_Exporter is fast. Only predicts on one sample per call. ~0.001 seconds per prediction

• Memory requirements:
– ~200 Mb for Solo_Predictor.

– Model_Exporter memory depends on the target programming language memory footprint
(Matlab, Python, C#, VB.NET, Java).

– This is in addition to the sample data and model memory requirements.

• Licensing/costs
– Exported models have no license costs for the end-user

• Versatility
– Solo_Predictor is full featured while Model_Exporter is not

Which Should I Use?
• Example: process NIR generates spectrum every 30 sec, need

results to go to DCS
• Solo_Predictor (probably)

• Example: need to combine spectroscopic measurements along
with process measurements stored in a data historian and
apply a model
• Solo_Predictor (database functionality and multiblock)

• Model_Exporter if you’re willing and able to add in a bunch of additional code

Which Should I Use?
• Example: handheld spectroscopic instrument using Linux and

an ARM platform with limited computing resources
• Model_Exporter

• export to XML
• use Java XML interpreter
• compile using C# XML interpreter

• export to m-file, use Matlab Coder to convert to ANSI C

• Example: high throughput analysis (>1 Hz)
• Model_Exporter

Which Should I Use?
• Example: I’ve built a model that I wish to share with others at

my large corporation who don’t use PLS_Toolbox or Solo. I also
wish to keep them from modifying any aspect of the model
• Model_Exporter => m-file

• use pcode to obfuscate the code or . . .
• . . . compile it using Matlab Coder

