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Introduction: Two common questions associated with 
mean-centering in principal components analysis 
(PCA) are the following. 1) If I don’t mean-center, is 
the first principal component [PC 1] the mean of the 
data? The short answer is that PC 1 is not the mean of 
the data but it can point in the direction of the mean. 
And, 2) why does PC 1 capture so much more 
“variance” when I don’t mean-center my data? The 
short answer is that PC 1 must account for sum-of-
squares (ssq) due to the mean when the data aren’t 
centered. For both questions, the extent to which 
centering affects the PCA model depends on the relative 
amount of ssq due to the mean and ssq due to variance 
about the mean. This white paper provides additional 
insight to the effect of data centering on the PCA model 
that can help interpretation of PCA results. 

Some Definitions: For a data set 𝐗 with 𝑀 samples and 
𝑁 variables, the total ssq, 𝑠!"!# , can be calculated as 

 𝑠!"!# 	= ∑ ∑ 𝑥$,&#'
$()

*
&() 	= 	tr(𝐗+𝐗) (1) 

where 𝑥$,& is an element of 𝐗 with 𝑚 = 1,… ,𝑀 and 
𝑛 = 1,… ,𝑁, and tr( ) is the trace operator. The mean, 
𝐱3, can be calculated from 

 �̅�& = !
"
∑ 𝑥$,&'
$() 		 ; 		𝐱3+ =	 !"𝟏

+𝐗 (2) 

where 𝟏 is a vector of ones. The sum-of-squares about 
the mean, 𝑠,--# , is given by  

 𝑠,--# 	= 	tr7(𝐗 − 𝟏𝐱3+)+(𝐗 − 𝟏𝐱3+)9 =		
tr(𝐗+𝐗) − tr(2𝐗+𝟏𝐱3+ − 𝐱3𝟏+𝟏𝐱3+)

= tr(𝐗+𝐗) −𝑀𝐱3+𝐱3 

 𝑠,--# 	= 	 𝑠!"!# 	−	𝑠.,/0#  (3) 

where 𝑠.,/0# = 𝑀𝐱3+𝐱3 is defined as the sum-of-squares 
due to the mean. For clarity, total variance 𝑠1/-#  is 
proportional to 𝑠,--#  and accounts for degrees of 
freedom. Variance, has the specific definition 𝑠1/-# =
)

'2)
𝑠,--# . Similarly, the covariance is defined as 

 cov(𝑿) = )
'2)

(𝐗 − 𝟏𝐱3+)+(𝐗 − 𝟏𝐱3+). (4) 

Early applications of PCA often worked with mean-
centered data and showed that the PCA eigenvalues are 
proportional to the “variance” captured in the 

covariance matrix.[1,2] Mean-centering is used to 
create models of multivariate data in multivariate 
statistical process control.[3] However, PCA is 
ubiquitous to multivariate analysis and applications 
have evolved to include data that have been center, not-
centered and preprocessed in a wide variety of ways. 
For that reason, it is more general to say that the PCA 
eigenvalues are proportional to “the total sum-of-
squares captured for preprocessed X about the data 
origin.” (E.g., for 𝑠!"!# , the data origin is zero.) The rest 
of the white paper will work with 𝑠!"!# , 𝑠,--#  and 𝑠.,/0# , 
and define the ratio 

 𝑓 = 𝑠.,/0#

𝑠,--#
@ = 𝑠.,/0#

(𝑠!"!# − 𝑠.,/0# )@ . (5) 

Centering Example 1: A plot of Data Set 1 is shown 
in Figure 1. The mean vector is plotted from [0, 0] to 
[4, 2.3] and the f-ratio is 11.2. This means that 𝑠.,/0#  is 
11.2 times the size of 𝑠,--#  and it would be expected that 
PC 1, 𝐩), would point in the general direction of the 
mean, 𝐱3. The fraction of variance due to 𝑠.,/0#  is 91.8% 
and that due to 𝐩), is 98.5%.  

 
Figure 1: Non-centered data, Data Set 1 with mean drawn from 
the origin to [4, 2.3]. 

Figure 2 shows that as the data sets move towards [0, 0] 
the 𝑠.,/0# 𝑠!"!#⁄  decreases as expected. The last data set, 
Data Set 6, is mean-centered and 𝑠.,/0# 𝑠!"!#⁄ = 0. The 
fraction of 𝑠!"!#  on PC1,	𝑠)#, is greater than due to the 
mean 𝑠.,/0# . To see why, recall that PCA finds 𝐩 that 
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maximizes capture of ssq. If 𝐗3 = (𝐗 − 𝟏𝐱3+) is the 
centered data, then the maximization for uncentered 
data 𝐗 for is 

 max
𝐩
$𝐩T𝐗T𝐗𝐩% = max

𝐩
'𝐩T𝐗cT𝐗c𝐩+𝐩T𝐱(𝟏T𝟏𝐱(T𝐩). (6) 

where the ssq captured on 𝐩 is the terms in { }. For the 
first PC, the term on the right-hand-side is 

 𝐩)+𝐗3+𝐗3𝐩) +𝑀𝐩)+𝐱3𝐱3+𝐩) ≥ 𝑀𝐩)+𝐱3𝐱3+𝐩) (7) 

where the term to the right of the inequality is the ssq 
due to the mean captured on 𝐩). Inequality 7 says that 
𝑠)# ≥ 𝑠.,/0#  as shown in the Table in Figure 2. 

 
Figure 2: Examples of non-centered data with means closer to the 
origin as the sets progress from Data Set 1 to 6. 

Figure 3 shows that as the data move away from [0, 0] 
(e.g., from Data Set 6 to 1 in Figure 2), PC 1 points in 
the direction of the mean: 𝐩) → 𝐱3‖𝐱3‖2) where ‖𝐱3‖# =
𝐱3+𝐱3. For this example, the angle between 𝐩) and 𝐱3 is 
slightly more than 1 degree when 𝒇 = 2.1. Figure 4 
shows this more clearly for the example data sets. 

Conclusions: A common misconception in PCA is that 
PC 1 is the mean of the data when the data are not 
centered. It was shown in this paper that PC 1 is not the 
mean of the data but it can point in the direction of the 
mean. The extent to which PC 1 points in the direction 
of the mean depends on how far away the data set mean 
is from the origin i.e., when the sum-of-squares due to 
the mean, 𝑠.,/0# , dominates the total sum-of-squares, 
𝑠!"!# . For this example, PC 1 pointed in the direction of 
the mean when 𝑓 = 𝑠!"!# (𝑠!"!# − 𝑠.,/0# )⁄  was greater 
than 2.1. See ComparePC1toMeandemo in 
PLS_Toolbox version 8.9 or higher.[4] 

 
Figure 3: Plot of the angle between 𝐩𝟏 and 𝐱- as 𝒇 increases. For 
this data, the approximate 95% limit is 2.1. 

 
Figure 4: Plot of the 𝐩𝟏 compared to 𝐱- as 𝒇 increases. 
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