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O-PLS
• Originally formulated as sequential algorithm 

(NIPALS based)
• Since shown to be obtainable from post-

processing conventional PLS model
• Does not improve prediction
• Claim is that model is more interpretable 
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Orthogonalize Model



Questions:

• What do we need to be aware of when 
interpreting O-PLS recovered components?

• What kinds of sensitivities does O-PLS have to 
noise, rotational ambiguity, and correlated 
concentrations?

Method: Use well-characterized and/or carefully 
constructed simple systems to study OPLS
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PLS Model of Heptane
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Samples/Scores Plot of spec1

R2 = 0.988
5 Latent Variables
RMSEC = 0.46945
RMSECV = 0.68306
Calibration Bias = −1.0658e−14
CV Bias = 0.0375

Percent Variance Captured by Regression Model 
-----X-Block----- -----Y-Block-----

Comp  This      Total   This      Total 
---- ------- ------- ------- -------
1   91.17     91.17    8.36      8.36 
2    7.40     98.57    7.19     15.55 
3    0.93     99.50   32.81     48.36 
4    0.46     99.96   26.18     74.54 
5    0.02     99.98   24.90     99.44 



Regular PLS and O-PLS Filtered 
Regression Vectors
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Simple System Example

• Synthetic example of three constituents
• Evenly spaced Gaussian peaks, analyte in 

middle
• Vary correlation between analyte and 

interferents

0 20 40 60 80 100 120 140 160 180 200
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

 

 
Interferent 1
Analyte
Interferent 2



Gaussian Peaks Scenarios

• Start with orthogonal concentrations
– 1) Go from orthogonal to positively correlated 

concentrations
– 2) One interferent positively correlated, one 

negatively correlations



Scenario 1-First O-PLS Loading
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Scenario 1-Regression Vector



Scenario 2-First O-PLS Loading
Regression vector same as 
Scenario 1 except r = 1 case



Pseudo-gasoline Example

• 5 component mixture measured by NIR
• Solve for pure components via CLS
• Use pure spectra to create synthetic scenarios
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Pseudo-gas Scenarios

• Start with orthogonal concentraions
– 3) All analytes positively correlated
– 4) One interferents positive, three negative



Scenario 3-First O-PLS Loading
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Scenario 4-First O-PLS Loading
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Binary Expression Simulation
• 10 Expressed Proteins (variables), 500 Subjects
• 1 "primary" effect with loading:

1    2   3    4    5   6   7   8   9  10
R R Q Q 0   0   0   0   0   0
(must have R, cannot have Q, 0 have no effect)

• 7 "background" effects (rank 1 patterns with 
positive and negative correlations as for primary)

• Only samples with primary loading expression for 
1-4 (after mixing all effects) will exhibit property 
of interest (e.g. disease) 
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Conclusions

• O-PLS does simplify regression vectors. It is 
CLOSER to underlying bilinear response…

• … HOWEVER, result generally not the same as a 
first principles model.

• O-PLS results strong function of correlation in 
concentrations

• O-PLS recovered component is more sensitive to 
chance correlation than is regression vector 
(Problem seen even with 500, 1000, or 2000 
samples!)


