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Cervical Cancer

• Pap smears credited with reducing cervical cancer 
mortality by detecting pre-cancerous cells, but…

• Sensitivity of Pap smears reported as 29-56%
• Abnormal Pap smear-> colposcopic examaination, but….
• Colposcopy success depends on interpretation and 

therefore experience of examiner
• Colposcopic impressions correlate with biopsies as little as 

35% of the time
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Goal of this work

• Develop a method to classify cervical tissue
• More sensitive and specific than current methods
• Doesn’t require high level of experience to use
• Can be easily administered
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The Cervix



5

Images of the Cervix
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The Data
• Colposcopic Images

• Interpreted by experts
• Areas of tissue type identified

• Biopsies
• Tissue type confirmed using staining and microscopy
• Areas identified on images
• “Gold Standard”

• Evoked Tissue Fluorescence Images
• Excitation Emission Fluorescence Images
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Classes of Tissue

• 1-within normal limits
• 2-normal squamous
• 3-normal columnar
• 4-squamous metaplasia
• 5-low SIL (Squamous Intraepithelial Lesion)
• 6-high SIL
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Similarity of Tissue Types

•1-within normal limits
•2-normal squamous
•3-normal columnar
•4-squamous metaplasia
•5-low SIL
•6-high SIL1
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Colposcopic Images and Biopsies

Biopsy locations
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The ETF Images

• Combinations of
• 3 excitation wavelengths
• 9 emission wavelengths
• 22 combinations measured
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Preprocessing Issues

• Image alignment
• Measurements take about 60s
• Patient movement an issue

• Patient to patient variability
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Image Alignment

• Images at different wavelengths look different
• …but sub-images should be correlated

• Should be most correlated when properly aligned
• Want big PCs to get bigger and small ones to get 

smaller
• Used Varimax criteria on singular values:
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Variance Captured Before and 
After Alignment
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Model Development

• Align images
• Center to normal squamous tissue on each patient / 

OR center to mean of all tissues
• Pool all patients - center & scale
• OPTIONALLY: GLS deweighting based on a 

single class
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Calibration

• PLS-DA on EACH CLASS
• take predicted y for each class and    

• threshold
• convert levels of disease to SIL scale
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Application

• Align
• Center each patient image to its own mean 

(NOTE: high levels of SIL will bias)
• Apply model
• Identify absolute “normal”, repeat (1)-(2) using 

centering to NORMAL
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Diagnostic False-Color Images

Class 2 Model

Class 3 Model

Class 4 Model

Class 5 Model

Class 6 Model

Normal Squamous Probability

Normal Columnar Probability

Squamous Metaplasia Probability

Low SIL Probability

High SIL Probability

Squamous 
Metaplasia 

Finder
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Diagnostic False-Color Images

Class 2 Model

Class 3 Model

Class 4 Model

Class 5 Model

Class 6 Model

Normal Squamous Probability

Normal Columnar Probability

Squamous Metaplasia Probability

Low SIL Probability

High SIL Probability

High-SIL
Finder



Squamous Met. Finder - Classes: 4,2,3 Hi-SIL Finder - Classes: 6,2,3

Normal Tissue Finder - Classes: 2,3

red, green, blue

Red = Squamous Metaplasia Red = High SIL

Red/Green = Normal Tissue

aD047
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Key to ROC Plots

cv       val
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Multivariate Curve Resolution
(On pseudo first-order data)
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Parallel Factor Analysis
(On second-order data)
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Summary

• ETF based device very close to clinical usefulness
• Mis-classifications tend to be on progression of 

disease
• Pre-processing critical
• PLS-DA effective
• Issues

• Only translational motion considered in alignment
• Other preprocessing and DA methods to consider


