Detection of Cervical Cancer from Evoked Tissue Fluorescence Images Using 2- and 3-way Methods

Barry M. Wise and Jeremy M. Shaver* Eigenvector Research, Inc. Manson, WA

1 *Now with Just Biotherapeutics

Cervical Cancer

- Pap smears credited with reducing cervical cancer mortality by detecting pre-cancerous cells, but...
- Sensitivity of Pap smears reported as 29-56%
- Abnormal Pap smear-> colposcopic examaination, but....
- Colposcopy success depends on interpretation and therefore experience of examiner
- Colposcopic impressions correlate with biopsies as little as 35% of the time

Goal of this work

- Develop a method to classify cervical tissue
 - More sensitive and specific than current methods
 - Doesn't require high level of experience to use
 - Can be easily administered

The Cervix

Images of the Cervix

The Data

- Colposcopic Images
 - Interpreted by experts
 - Areas of tissue type identified
- Biopsies
 - Tissue type confirmed using staining and microscopy
 - Areas identified on images
 - "Gold Standard"
- Evoked Tissue Fluorescence Images
 - Excitation Emission Fluorescence Images

Classes of Tissue

- 1-within normal limits
- 2-normal squamous
- 3-normal columnar
- 4-squamous metaplasia
- 5-low SIL (Squamous Intraepithelial Lesion)
- 6-high SIL

Similarity of Tissue Types

Colposcopic Images and Biopsies

The ETF Images

- Combinations of
 - 3 excitation wavelengths
 - 9 emission wavelengths
 - 22 combinations measured

Preprocessing Issues

- Image alignment
 - Measurements take about 60s
 - Patient movement an issue
- Patient to patient variability

Image Alignment

- Images at different wavelengths look different
- ...but sub-images should be correlated
 - Should be most correlated when properly aligned
 - Want big PCs to get bigger and small ones to get smaller
 - Used Varimax criteria on singular values:

Variance Captured Before and After Alignment

Model Development

- Align images
- Center to normal squamous tissue on each patient / OR center to mean of all tissues
- Pool all patients center & scale
- OPTIONALLY: GLS deweighting based on a single class

Calibration

- PLS-DA on EACH CLASS
- take predicted y for each class and
 - threshold
 - convert levels of disease to SIL scale

Application

- Align
- Center each patient image to its own mean (NOTE: high levels of SIL will bias)
- Apply model
- Identify absolute "normal", repeat (1)-(2) using centering to NORMAL

Diagnostic False-Color Images

Diagnostic False-Color Images

Normal Tissue Finder - Classes: 2,3

aD047

red, green, blue

Hi-SIL Finder - Classes: 6,2,3

Multivariate Curve Resolution (On pseudo first-order data)

Parallel Factor Analysis (On second-order data)

Summary

- ETF based device very close to clinical usefulness
- Mis-classifications tend to be on progression of disease
- Pre-processing critical
- PLS-DA effective
- Issues
 - Only translational motion considered in alignment
 - Other preprocessing and DA methods to consider

