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Abstract

Principal components regression (PCR) is used to identify finite impulse response (FIR) dynamic models. It is
demonstrated that the PCR method has a predictable influence on the frequency-response of the resulting models. If
the process input is white noise passed through a first-order filter. its principal-component decomposition is a set of
sinusoidal factors at specific frequencies. The first principal component (PC) is associated with the lowest-frequency,
maximum-power sinusoid. Succeeding PCs are associated with increasingly higher frequencies having progressively
less power. The decomposition of more complex input signals produces similar results. Models retaining a relatively
small number of PCs fit the true process characteristics in a limited frequency range (where the input power is
concentrated). Adding PCs to the regression broadens the model’s bandwidth.
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INTRODUCTION

Finite impulse response (FIR) models, and
the closely related step-response models,
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form the basis of many model-based control
schemes [1]. There is, however, relatively lit-
tle information in the literature on the iden-
tification of FIR models. The definitive work
by Ljung [2] emphasizes identification of
transfer-function and state-space models.
Papers specifically concerned with FIR mod-
eling include the work of Ricker [3], who
used partial least squares (PLS) and a method
based on the singular value decomposition
(SVD). Rivera et al. [4,5] also studied the use
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of PLS. Cutler and Yocum [6] discuss identi-
fication of step-response models of complex
chemical processes, but omitted details of
the numerical methods.

It is possible to use multiple linear regres-
sion (MLR) to obtain FIR coefficients. The
resulting models are usually unsatisfactory,
however. Many parameters must be esti-
mated, making the problem ill-conditioned.
The parameter estimates are too easily cor-
rupted by noise in the data. The use of a
low-order transfer-function or state—space
model avoids this problem (see, e.g., Ljung
[2]). The disadvantage is that the results can
be sensitive to the choice of model structure.
Another possibility is the use of orthogonal
polynomials, such as Laguerre networks [7.8].
This is conceptually similar to the principal
components regression (PCR) approach
studied here.

In the sequel, we show that the singular-
value and principal-components decomposi-
tion filter the input signal, affecting its fre-
quency content. This allows us to predict
certain qualitative properties of PCR; we
demonstrate that they occur in practice. This
paper is an outgrowth of previous work on
the use of PCR, PLS and related techniques
(see for example Wise [9], Wise and Ricker
[10-12] and Wise et al. [13)).

BACKGROUND: FIR MODELS AND PCR

Finite impulse—response models are easily
extended to the multiple input single output
(MISO) case, but we will restrict our atten-
tion to SISO systems. In a discrete, SISO,
FIR model, the output of a dynamic system
is a linear combination of n past values of
the input:

y(t)=bu(t—1)+byu(t—2)+ -
+b,,u(t—n) (1)

Here, y is the output, u is the input, and b,
to b, are model parameters (constants). We
assume that the process signals are sampled
at a constant frequency; the notation u(0),
u(1),..., u(t) implies a sequence of such
samples. The process should be asymptoti-
cally stable with a settling time approxi-
mately equal to n sampling periods.

The PCR method is outlined in several
articles and texts such as Geladi and Kowal-
ski [14], Lorder et al. [15] and Naes and
Martens [16]. There are several points con-
cerning PCR that must be emphasized here.
The first concerns the relationship between
principal components (PCs), the singular
value decomposition (SVD) and eigenvec-
tors. For a matrix X, the PCs of X, the right
singular vectors of X and the eigenvectors of
X'X are all the same. This fact will be used in
the development below.

The critical decision in PCR is the number
of principal components to retain when
building the regression model. This is analo-
gous to the choice of the number of orthogo-
nal polynomials in a Laguerre network rep-
resentation [8]. Cross-validation usually al-
lows one to eliminate some of the PCs. This,
however, causes certain anomalies in the re-
sulting model. The nature of these anomalies
is a major focus of the paper.

THE INPUT AUTOCORRELATION MATRIX

When data are arranged for FIR model-
ing, the resulting matrices resemble those
shown in eq. (2) below. Here, the first four
samples are shown for identification of a
five-coefficient SISO, FIR model (compare
with eq. 1). Note how the values of the
measured input, u(¢), in the X matrix are
repeated along diagonals.
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[ ¥(6)
y(7)
1 v(8) (2)
y(9)

As pointed out in Box and Jenkins ([17], p.
53), if u(¢) is a random sequence with zero
mean and unit variance, the correlation ma-
trix, X'X/(n — 1), approaches the autocorre-
lation matrix (ACM) as more data are col-
lected. Each entry in the autocorrelation ma-
trix, a;;, is equal to the correlation coeffi-
cient between u(r+j) and u(r+i). Note,
however, that the correlation between any
u(t +j) and u(r+i) depends only on the
difference between i and ;. This can be
compared to the autocovariance functin
(ACF) (see, for example, Box and Jenkins
[17]), which is a vector of the covariance
between a (mean centered) signal u at time ¢
and time ¢ — 7. Thus:

ACF(7)=E{u(t)u(t — 7)) (3)

where E{-} denotes the expectation opera-
tor. If u is scaled to unit variance, the ACF
becomes the autocorrelation function. Be-
cause every value in the ACM depends only
upon the difference of the indices, every
entry a; in the ACM can be replaced by
ACF(i —j). This is shown in eq. (4), where
each value in the ACM is replaced by the
corresponding value in the autocorrelation
function (ACF).

XX
ACF(0)  ACF(1)  ACF(2)  ACF(3)  ACF(4)
ACF(=1) ACF()  ACF(1)  ACFQ)  ACF()
ACF(=2) ACF(=1) ACF(0)  ACF(l)  ACF(2) (4)
ACF(=3) ACF(=2) ACF(-1) ACF©)  ACF(1)
ACF(=4) ACF(=3) ACF(-2) ACF(~1) ACF(0)

The ACM is a symmetric Toeplitz matrix.
Furthermore, if the characteristics of the in-
put signal, u, are known, the expected value
of the ACM can be calculated. For instance,
if u(k) is generated by passing a white noise
signal, e(k), through a first order filter

u(k)=au(k —1)+ (1 —a)e(k) (5)

then the expected values of the entries in the
autocorrelation matrix are

ACM(ij)=a,;=(a)"™" (6)

EIGENVECTOR DECOMPOSITION OF THE ACM

The basis of the PCR method is an eigen-
vector decomposition of the covariance ma-
trix, X'X/(n — 1). For FIR models, this ma-
trix is the autocovariance matrix (ACM) of
the input signal, u(s). Wise and Ricker [11]
observed that eigenvectors (PCs) of such a
matrix have coefficients that plot as sine and
cosine functions. For example, Fig. 1 shows
the coefficients of the first five eigenvectors
of the theoretical ACM for a u(k) sequence
generated by eq. (5) with a = 0.8. This ACM
was calculated for |i —j| up to + 100 result-
ing in an ACM matrix that is 101 by 101.

Eigenvector Coefficient

s

o
[

20 40 60 80 100
X-Block Variable Number

Fig. 1. Coefficients in first five eigenvectors of autocorrelation
matrix of white noise process through first order filter.
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There would be 101 coefficients in the FIR
model corresponding to this ACM. As ex-
plained above, the loadings vectors from PCA
are identical to these eigenvectors. For the
corresponding continuous but finite case, the
eigenvector coefficients are identically sine
and cosine functions (see Appendix).

The theoretical results for the continuous
case can be compared to the above calcula-
tions for the discrete case. To define the
analogous continuous time problem, the in-
tegration limits must be specified. We re-
quire that

ACM(1, m)=a™ '=¢ ¢ (7)
which when rearranged yields

1 1
a= Elog( ] ) (8)

For our example this gives a = 5.268. This
makes the values in the continuous function
map onto the same values in the discrete
case. Equations (A5) and (A7) in the Ap-
pendix can now be used to determine the
periods of the cosine and sine eigenvectors,
respectively.

Figure 2 demonstrates the agreement be-
tween the continuous and discrete cases. The
coefficients of the first three cosine eigenvec-
tors of the discrete problem (eigenvectors 1,
3 and 5) are the solid lines, and the predicted

0.15

0.1

0.05

-0.05}

-0.1

Eigenfunction/vector Coefficient
(=]

013 s 3 0 3 3 6

Position in x-Domain

Fig. 2. Coefficients of the cosine eigenvectors of the discrete
matrix (solid lines) shown with eigenfunction solutions to the
continuous problem (+).

Eigenvalue

2 3 4 5 6 7 8 9 10
Eigenvalue Number

Fig. 3. Eigenvalues of the discrete case (solid line) shown with
scaled eigenvalues of the continuous case (*).

values based on the continuous problem are
the plus symbols. The coefficients are plotted
against the position in the x-domain (see the
Appendix). The coefficients of the continu-
ous problem were scaled to yield unit vec-
tors. The agreement is nearly perfect. Small
discrepancies are confined to the higher fre-
quency terms.

It is possible to check the agreement of
the corresponding eigenvalues. Because the
scaling and size of the ACM affects the
magnitude of the eigenvalues, it is not possi-
ble to compare the values directly. Figure 3
shows, however, that the distribution of the
two sets of eigenvalues is the same. The solid
line reprents the calculated eigenvalues of
the discrete problem. The stars are the scaled
eigenvalues of the continuous problem. The
eigenvalues of the continuous problem were
scaled to equate the first eigenvalues in the
two distributions. The agreement is good;
there are slight discrepancies for the smaller
eigenvalues.

Numerical simulations show that the
agreement between eigenvector decomposi-
tions of ideal discrete ACMs and the contin-
uous analog is very good, even as the matri-
ces become quite small. The agreement be-
tween cases suffers as the a parameter in
the discrete, case is decreased. This happens
because for small o« the ACM loses its
smoothness, i.e., the differences between ad-
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jacent entries in the matrix is large. A de-
crease in a is equivalent to an increase in
the sampling frequency.

In practice, when identifying FIR models
the input covariance matrix will not be ideal
even when the input is generated by white
noise through a first order filter, i.e., the
matrix will not be perfectly Toeplitz due to
the finite data record. However, for typical
cases where the number of coefficients is
> 10 and there are several hundred samples,
the agreement between calculated principal
components and pure sines and cosines is
very good. Other ACM forms arrived at
through higher order filters produce similar.
though not identical, results. Certain cases.
such as white noise through a second order
under-damped filter, produce eigenvectors
that still have periodic behavior, but are es-
sentially combinations of frequencies and can
be rather complex.

FREQUENCY DOMAIN EFFECTS OF PCR

The results of the previous section show
that PCR decomposes the input signal into
components with differing frequency con-
tent. This has a direct effect on the models
obtained from the technique. Two identifica-
tion experiments are used here to illustrate
this effect. In the first case the true system is
first order, while in the second case the true
system is second order (under-damped). Both
systems have unity gain. A pseudo-random
binary sequence (PRBS) input signal of de-
sired frequency content was used in both
experiments. The PRBS was generated by
filtering white noise through a second order
Butterworth filter, then taking the sign of the
result. Thus, the input signal was 1 when the
output from the filter was positive and — 1
when it was negative. The transfer function
form of the process models and filter param-

TABLE 1

Model parameters for case studies

Denominator, A(¢ ")
1-08574g
1-1.5622¢" "' +0.77884 *
1-1.8890g "' +0.89494

Numerator, B(g ")

Case 1 0.1426¢4 !

Case 2 0.1129¢ ' +0.1038¢ 2

Filter  0.0015+0.00294 !
+0.0015¢ 2

eters are given in Table 1. The processes and
filter are of the form

vik)=a,y(k—1)+ --- +a, y(k —m)
+tbou(k—=1)+ - +b,(k—n) (9)

This is conveniently expressed in terms of
the backwards shift operator, ¢!, (see for
example Astrom and Wittenmark [18]) de-
fined as

g~ 'x(k)=x(k - 1) (10)

The individual terms in eq. 9 can be grouped
to form two polynomials in ¢~ ':

A(q ")y(k)=B(q "u(k) (11)

where, eg, A=1-aq'— - - —a, q".
Table 1 gives the values of the polynomial
coefficidents used. Figure 4 shows the Bode
magnitudes of the models, and the input
signal power spectrum.

The calculated PRBS was used to gener-
ate a calibration set of 500 samples from

both processes. A segment of the PRBS in-

101

5 100 F j
H E 3
),5 101 ¢ ]
.= 13 g
z E \’\"& ]
f 5 ++ Case 1 Process s !
< 102 ]
. E 00 Case 2 Process ‘*\\1 \ :
E / i

5 10 3'5 __ PRBS Input Power ‘u\.w ]
: 3

]

i 4

Fib 16 100 10!

Frequency (Radians/Sample Time)

Fig. 4. Bode magnitude for test processes with input signal
power spectrum.
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Fig. 5. Example PRBS input (solid) and Case 2 process output
(dashed).

put generated with these parameters is shown
in Fig. 5, along with the output from the
Case 2 process. Principal components regres-
sion was used to identify FIR models of the
noise-free processes. In each case 30 FIR
coefficients were used. The frequency-re-
sponse of these models was calculated as a
function of the number of PCs retained in
the regression.

Figures 6 and 7 show the Bode magni-
tudes for each of the true systems. They also
show the frequency responses of a series of
FIR models (identified with PCR, for 1 to 6
principal components, PCs). The 1-PC mod-
els only match the process behavior at low
frequency. As PCs are added, the model fit
extends to progressively higher frequencies.

The dips in the gain for the PCR models
are a consequence of the sinusoidal nature of
the PCs. The FIR model identified using one

[N ET

T T TTTTTH

More PCs
101

+++ True Process

___ PCR Models

Amplitude Ratio
T

L1

10:2

M)
101 100 10
Frequency (Radians/Sample Time)

>
e

Fig. 6. Bode gain for first order process (+) and PCR models
(solid lines).

10!

100

101 More PCs

+++ True Process
_ PCR Models

Amplitude Ratio

102

T T T T T

103
102 10! 100 [

Frequency (Radians/Sample Time)

Fig. 7. Bode gain for second order process (+) and PCR
models (solid lines).

PC has coefficients that are a cosine function
of a particular frequency. Certain input fre-
quencies are orthogonal to this frequency
and are attenuated in the model output.
Note, e.g., that the gain dips in Figures 6 and
7 occur at frequency intervals of 27, as one
would expect.

Figures 8 and 9 show the step response of
the processes and the PCR models. As PCs
are added, the shape and gain of the model
step response improves. In no case is the
high-frequency (short-time) response mod-
eled well, however, confirming the results
shown in Figs. 6 and 7. The primary reason
for this is the limited input power at high
frequencies (see Fig. 4).

The consequences of this behavior are im-
portant and deserve further clarification.

1+ e

08+ 3PCs "
+
+
+
0.6 +
+ 2PCs
+
041 i 1PC
+
0.2+
+
0 5 10 15 20 25 30

Sampling Period
Fig. 8. Step response for first order process (+) and PCR
models (solid lines).




B.M. Wise and N.L. Ricker / Process Control and Quality 4 (1992) 77-86 83

15— - -
* 5 PCs -
+ * \ K
/ + e 3PES 4 |
+/ + _
1 fi g — T
s + £
/ 3 PCs +\¢ + B /
o ) |
0.5} / 2PCs 1
1PC |
5 10 15 20 25 30

Sampling Period

Fig. 9. Step response for second order process (+) and PCR
models (solid lines).

Suppose that the first PC from the decompo-
sition of the ACM can be represented as a
continuous cosine function of period 47
(frequency = 0.5) over the interval from —
to 7. The function goes through one-half
cycle in this interval. It is similar to the first
PC from a typical ACM decomposition, as
demonstrated previously (sce Fig. 1). For a
sinusoidal input, the process output y(¢) of
the 1-PC (continuous) FIR model must then
be

v,(1) =(‘1/ cos(0.5 x) cos(m(x +1)) dx
(12)

where m is the frequency of the input signal,
and ¢, is the constant determined from re-
gression of y onto the scores vector t,. The
solution to this integral is

—m)]
+sin[mt +(0.5—m)w]}

x{2(0.5 —m)}

{Sm[mt + (0.5 +m)w|

yi(t) ={sin[=mt + (0.5

+sin[ —mt + (0.5 + m)w]}

X {2(0.5 +m)} "' (13)

When m is an integer plus 0.5, the value of
the numerator in both terms is identically

zero for all ¢. Thus the frequencies 1.5, 2.5,
3.5, etc., will not pass through the 1-PC
model.

Let us further assume that the second PC
can be represented as a sine function of
period 27 (frequency 1) over the same inter-
val (again, compare with Fig. 1). The contri-
bution of the second PC to the model will
then be

va(t) = e[ sin(x) cos(m(x +1)) dx  (14)

ok 7 5

When m is an integer greater than 1, the
value of the integral in (12) is zero for all ¢,
Thus, the second PC will make no contribu-
tion to the 2-PC model at frequencies of 2, 4,
6, ctc. The response at these frequencies will
equal that of the 1-PC model. There are no
values of m <1 for which the integral van-
ishes.

The behavior shown in Figs. 6 and 7 agrees
with the above mathematical argument. The
I-PC model does not pass certain frequen-
cies occurring at even intervals. The 2-PC
model passes these frequencies but adds
nothing to the centers of the intervals of the
1-PC model. This pattern repeats as we in-
clude more PCs in the model. Changes in the
frequency content of the input signal will
vary the location of the dips, but they will
appear in any case.

Numerical results indicate that as PCs are
added, the FIR models fit the true system
behavior first in the frequency range where
the power if the input was concentrated. For
instance, in a band-pass filter is used to
generate the input signal, the models will
first emphasize the pass-band. As PCs are
added, the fit in the neighboring regions will
improve. This is consistent with the theory of
eigenvector decomposition of the ACM de-
veloped here.
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EFFECT OF INPUT FILTERING ON ACM DECOMPOSI-
TION

The ACM for a process other than white
noise through a first-order filter will have a
more complex decomposition. Figures 5 and
6 show that the results are quite similar to
the ideal ACM case, however.

The following example illustrates how dif-
ferent filtering options affect the ACM de-
composition. An input signal was generated
by filtering a 1000-sample white-noise se-
quence through a first-order process as in eq.
(5) with a =0.8. Its 30-point autocorrelation
matrix (including time shifts from —30 to
+ 30 units) was computed. The original sig-
nal was filtered through a first-order process
with a varied from 0.1 to 0.7. Figure 10
compares the eigenvalues of the ACM from
the filtered signal with those of the original
signal. Note how the filtering has a larger
effect on the small eigenvalues (associated
with higher frequencies) than on the large
eigenvalues. This is expected because the
filter is a low-pass type. Increasing the value
of a lowers the cutoff frequency of the filter
and begins to reduce the larger eigenvalues
(associated with lower frequencies) while
having an even greater impact on the smaller
ones. The eigenvectors of this ACM change

101

NN

original signal

a=0.1

Eigenvalue
T

101

5 10 N 20 25 30
Eigenvalue Number

Fig. 10. Eigenvalues of autocovariance matrix for original
signal (+) and filtered signals (solid lines) as cutoff frequency
is lowered.

very little as a increases (not shown — see
Wise [9)).

We note in passing that, for FIR model
identification, low-pass pre-filtering of the
input and output data is probably not a good
idea. This is particularly true when the Mul-
tiple linear regression (MLR) method is to
be used. Low pass filtering can make the
autocovariance matrix extremely ill-condi-
tioned. Multiple linear regression uses the
inverse of this matrix, amplifying the noise in
the data.

CONCLUSIONS

The frequency-domain properties of FIR
models identified via Principal Components
Regression have been explored. We have
shown that PCR decomposes certain types of
input signals by frequency. The decomposi-
tion is similar to a Fourier transform, but the
frequencies are orthogonal over the “FIR
window” rather than over an infinite domain.

An FIR model identified by PCR fits the
true process behavior in a limited frequency
range — that associated with the PCs re-
tained in the model. This causes artifacts
(“gain dips”) in the frequency response of
the model. We also showed that pre-filtering
of the input signal has a significant effect on
the eigenvalues of the resulting ACM, but
not on the PCs. Thus, FIR models derived
from complex input signals will also have
frequency-domain artifacts, The effect of
such artifacts on model-based controllers has
yet to be reported.

Related work [12] has shown that the opti-
mal choice of the number of PCs reduces the
impact of noise. This, in combination with
the above results, suggests that PCR can be
viewed as a tunable filter. By choosing the
number of PCs, one adjusts the filter cutoff
to optimize the predictive ability of the re-
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sulting model. The simplicity of this ap-
proach should be attractive to practitioners.

REFERENCES

1 C.E. Garcia, D.M. Prett and M. Morari. Model predictive
control: Theory and practice — A survey. Automatica. 25
(1989) 335-348.

L. Ljung, System Identification: Theory for the User, Pren-

tice-Hall, Englewood Cliffs, NJ. 1987,

N.L. Ricker. The use of biased least-squares estimators for

parameters in discrete-time pulse-response models. Ind.

Eng. Chem. Res., 27(2) (1988) 343-350).

4 D.E. Rivera, J.F. Pollard and C.E. Garcia, Control-Rele-

vant parameter estimation via prediction-error methods:

Implications for Digital PID and QDMC control. Pre-

sented at AIChE Annual Meeting, Chicago I1L. 1990,

D.E. Rivera. J.F. Pollard. L.E. Sterman and C.E. Garcia,

An industrial perspective on control-relevant identifica-

tion, Proc. 1990 American Control Conference. San Dicgo.

CA. IEEE, 1990, pp. 2406-2411.

6 C.R. Cutler and F.H. Yocum, Experience with the DMC
inverse for identification. in: Y. Ackun and W.H. Ray
(Eds.). Chemical Process Control -CPCIV, AIChE. New
York, 1991, pp. 297-317.

7 C. Zervos, P.R. Belanger and G.A. Dumont. On PID
controller tuning using orthonormal series identification.
Automatica, 24 (1988) 165-175.

8 W.R. Cluett and L. Wang, Modelling and robust controller
design using step response data, Chem. Eng. Sci.. 46(8)
(1991) 2065-2077.

9 B.M. Wise, Adapting Multivariate Analysis for Monitoring
and Modeling Dynamic Systems. Ph. D. Dissertation. Uni-
versity of Washington, Seattle, WA, 1991

10 B.M. Wise and N.L. Ricker, Feedback strategies in multi-
ple sensor systems, AIChE Symposium Series of Process
Sensing, 85 (267) (1989) 19-23.

11 B.M. Wise and N.L. Ricker. The effect of biased regres-
sion on the identification of FIR and ARX models. A/ChE
1990 Annual Meeting. Nov. 1990

12 B.M. Wise and N.L. Ricker. Identification of finite im-
pulse response models with continuum regression. J.
Chemometrics (submitted) 1992,

13 B.M. Wise. N.L. Ricker, D.J. Veltkamp and B.R. Kowal-
ski, A theoretical basis for the use of principal component
models for monitoring multivariate processes. Process
Control and Quality, 1 (1990) 4]1-51.

14 P. Geladi and B.R. Kowalski. PLS tutorial. Anal. Chim.
Acta, 185(1) (1986) 1-17.

15 A. Lorber, L.E. Wangen and B.R. Kowalski. A Theoretical
Foundation for the PLS Algorithm, J. Chemometrics. |
(1987) 19-31.

16 T. Naes and H. Martens. Principal component regression
in NIR analysis: Viewpoints. background details and selec-
tion of components, J. Chemometrics, 2 (1988) 155-167.

(3]

[

N

17 G.E.P. Box and G.M. Jenkins. Time Sereis Analysis: Fore-
casting and Control, Holden-Day. Oakland CA. 1976.

18 K.J. Astrom and B. Wittenmark. Computer Controller Sys-
tems: Theory and Design, Prentice-Hall, Englewood Cliffs.
NJ. 1984.

APPENDIX

The continuous-time autocorrelation ma-
trix is a continuous function of two variables,
which we will call x and y. These vary over a
finite domain. In the discrete-time case, it is
possible to multiply the ACM (a function of
two indices) by a vector (a function of one
index) to obtain a vector (also function of
one index). In an analogous manner, one can
mutliply the continuous ACM by a function
in one variable, say x, then integrate to ob-
tain a function in one variable, y. Let us
define the continuous ACM for x and y in
the interval [—a, a]. The width of the inter-
val is proportional to the FIR window width.
For simplicity, assume that the continuous
ACM can be defined as

ACM(x, y)=¢e'x*¥! (A1)

This does not affect the generality of the
solution.

If a cosine function is an eigenfunction of
the analogous continuous-time problem,

xX=a X . X y
[ c‘”-“‘cos(—) dx=A COS(—) (A2)
n B

X=—ua

for some choices of 7 and A. The integral in
eq. (A2) can be evaluated as follows:

X=da _ X
[ e"”-"cos(—) dx
n

xX=-a
17} ) X

/ c“““’cos(——

n

-y

dx forx+y>0

_V.v ) v x
/ e‘””cos(—) dx forx+y<0
n

=g

(A3)
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o= g0 RL L g )
a a
—cos(—) sin(—)
% nj . n
1—n"? (14+n *)n
.__-‘)‘
2cos(———)
n
- A4
14+n" - (A4)

For certain values of n, the first term on
the right hand side of eq. (A4) is identically
zero. This occurs when

sin(a/n)

n=m=tan(a/n) (AS)

This gives the allowed periods of the cosine
eigenfunctions. (The true period would be
equal to 27n.) The eigenvalues associated
with each period n, A, are given by

A, =2/(1+n"?) (A6)

In a similar manner, one can rewrite eq.
(A2). with sine replacing cosine. The result is
that the allowed periods of the sine eigen-
function are given by

-1

B ————
tan(a/n)

(A7)

The associated cigenvalues are are in eq.
(A6).
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