
Data Preprocessing 
for Quantitative and 
Qualitative Models 

Based on NIR 
Spectroscopy
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• Preprocessing Objective
• Definition of Clutter
• Linearization
• Mean Centering and Autoscaling
• Baseline Removal
• Normalization, Multiplicative Scatter Correction 

(MSC)
• Smoothing, Filtering and Derivatives
• Orthogonalization Filters: EPO, GLS
• Conclusions

Outline
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Goal of Preprocessing
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• Data preprocessing is what you do to the data 
before it hits the modeling algorithm (PCA, PLS, 
MCR, SIMCA, etc.)

• The goal of preprocessing is to remove variation 
you don’t care about, i.e. clutter, in order to let the 
analysis focus on the variation you do care about

• Examples
• Systems with scattering: physical vs. chemical effects
• Classification: intra-class vs. inter-class variation



Measured Signal

• Clutter is present in all measurements (X & Y)
• clutter = interferences + noise not of interest

  X = csT + Xc +E

Measured Signal
Target Signal

Clutter Signal

Interference 
Signal

Noise

  csT

  Xc

  Xc +E
 E
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Sources of Clutter
• Systematic background variability

• Variation in chemical interferents
• Physical effects such as scattering due to particles

• Other changes in the system being observed
• T, P changes, variable sample matrix, “dark current”

• Variance due to physics of instrument
• e.g., drift, instrument changes, variable baseline or gain
• Non-linearity, saturation

• Non-systematic random noise
• homoscedastic, heteroscedastic
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Reasons to Preprocess

• Reduces variance from extraneous sources
• Makes relevant variance more obvious
• Makes statistics work better
• Aids interpretation
• Avoids numerical problems
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Transformation to Linear Form
• Within X-block (predictor variables, e.g. spectra)

• PCA works best with linear relationships
• Between X- & Y-block (predicted variable) 

• PLS regression assumes linear relation
• If possible, non-linear data should be converted to 

a linear form (e.g., use known physics of the system)
• Example:

• Typically work with absorbance rather than 
transmittance

• Log(I/I0)
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Mean Centering
• Often we are most interested in how the 

data varies around the mean
• Mean centering is done by subtracting the 

mean off each column, thus forming a 
matrix where each column has mean of zero
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Centering is an Axis Translation

• Geometry for 2 variables
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Mean Centering on Spectra
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Variable Scaling
• Scaling is done to change variance of variables, 

and thus the weight given to them in modeling
• Most common is autoscaling, which makes 

variables unit variance and mean zero
• Mean center variables
• Divide by standard deviation

• Autoscaling removes all scale information
• What’s left is only how the variables correlate 

with each other
• it is the “correlation matrix”
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Autoscaling on Spectra
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Sample-to-Sample Baseline
Baselines can exhibit simple 
offsets, slopes, polynomials or 
more complicated functions.

In the example, the offset is larger 
than the absorbance features of 
interest.

Adds variance that can inhibit 
predictive capability and make 
extraction of chemical information 
(e.g., via multivariate curve 
resolution) difficult.
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Background/Baseline 
Subtraction

Removal of broad (low-frequency) interferences while 
retaining higher-frequency features. Only low-order 
polynomials are used to model the background.
• Detrend: fit polynomial to entire spectrum 
• Selected-Points baselining: fit polynomial to selected points in 

spectrum
• Weighted Least-squares (a.k.a. asymmetric) baselining: fit to 
automatically selected points on the bottom of the spectrum
• Windowed: Whittaker, Rolling Ball, Median, Minimum, etc.
• Etc.
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Selected-Points Baseline
• Detrend based on points in spectrum known to be 

only baseline. Subtract the result from all channels.
• good when zero points are known a priori
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Weighted Least-Squares Baselining
• Automatic selection of baseline points by fitting polynomial to 

the “bottom” (or “top”) of the spectrum à asymmetric fit.
• Starts with a fit to all points (detrend) then de-weights points above the baseline (those with large 

positive residuals).
• Iterates until only points w/in a defined tolerance on the residuals are kept. (Need to define tolerance 

on the residuals.)
• Easy approach for simple baselines (e.g., polynomials).
• Can also include known baseline functions.
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Sample Normalization Methods
• Previous examples removed an offset. How is variance due 

to changing magnitude removed?
• variable source or lighting magnitude
• scattering effects

• Row Normalization: removes magnitude
• Standard Normal Variate (SNV): subtracts the row mean 

from each row and scales to unit variance
• Autoscaling of the rows

• Multiplicative Scatter Correction: Determines scale 
factor that best fits new spectrum to reference

• Be aware that these can “blow up” low signal noisy 
samples to have more variance 
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Normalization
• Normalize each row / spectrum 
• Order of normalization (p-norm)

• 1-norm : normalize to unit AREA (area = 1)
• 2-norm : normalize to unit LENGTH (vector length = 1)
• inf-norm : normalize to unit MAXIMUM (max value = 1)
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Scatter / Signal Correction

• Multiplicative Scatter Correction (MSC)
• Attempts to remove offset and row magnitude 

variability
• Result is less signal related to scattering artifacts 

and more signal related to analyte(s) of interest
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MSC Example
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Spectra (Selected Wavelengths)
Samples 19 & 22

Sample 22

Sample 19

Sample 22 looks 
uniformly larger than 
Sample 19
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Plot Sample 22 vs. Sample 19

Identity 
Line

Slope = 1.0584
Int = 0
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Multiplicative Effect:
Spectra are Identical except one 

is a Multiple of the Other
• Changing sample pathlength, e.g. changing 

light scattering with particle size.
• Changing sample density, e.g. changing 

temperature of sample.
• Changing gain of the instrument.
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MSC 
Multiplicative Signal (Scatter) Correction

Identity 
Line

Divide each absorbance of 
Sample 22 by slope = 1.0584 



With MSC
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Savitzky-Golay Smoothing and 
Derivatives

• Derivatives wrt λ can be used to 
remove offsets/slopes

• Savitzky-Golay smoothing and 
derivatives
• piece-wise fit of polynomials to 

each spectrum
• use fit directly for smoothing
• use derivative in each window for 

estimate of derivative wrt λ
• smooth + derivative can be boiled 

down to a set of coefficients
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Savitzky-Golay First Derivative

  x = cST

  

x = cST +α1T

dx
dλ

= c
dST

dλ
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EPO and GLS Filters
• EPO = External Parameter Orthogonalization
• GLS = Generalized Least Squares filter
• Both use samples that characterize the clutter

• Variation not related to the problem of interest
• Classification problems: inter-class variance
• Regression problems: samples with same property

• EPO makes PCA model of clutter, orthogonalizes 
data against first few PCs – hard filter

• GLS calculates weighted inverse of clutter 
covariance, applies to all data – soft filter
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With MSC and GLS
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NIR Shootout 2002
• Estimate tablet assay value from NIR transmittance

• Calibration (155 samples), Test (460 samples)
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Prediction Error on Validation 
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Perspectives on Preprocessing
• Order matters. The general approach is:

1. Background and offset removal
2. Normalization
3. Centering
4. Scaling

• Always keep in mind: “what is each preprocessing 
step supposed to be doing?....”

• Plot data after pre-preprocessing and color code!
• Always compare the effect of the pre-processing  

(classification or regression error rates) with the 
results from a model based on the raw data
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Pre-processing will offer…

• Models with better predictive or 
classification performance and/or

• Simpler models that are more robust and/or 
more easy to interpret

• But there is a risk that you can remove 
useful information from data

• Preprocessing must be validated as part of 
the model development process
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