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Hyperspectral Image Analysis

* Images where every pixel contains complete
spectrum

— Possible with nearly every type of spectroscopy
and spectrometry

* Goal of analysis is usually to obtain maps of
chemical species
— Can be for specific analytes, elements or ...
— Seldom have completely specific channels
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Contrast Enhancing Methods

Principal Components Analysis (PCA)
— Nice pictures but not chemically meaningful

Multivariate Curve Resolution (MCR)

— Contrast constraints

Independent Components Analysis (ICA)

— Homeopathic ICA
Other methods

— Maximum Autocorrelation Factors (MAF)
— Maximum Difference Factors (MDF)

— Clutter Filters
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Multivariate Curve Resolution

* MCR attempts to resolve mixtures into pure
spectra and concentrations without using
prior information

— MCR typically solved with Alternating Least
Squares (ALS)

— Typically solved with constraints, e.g. non-
negativity, continuity

— Other variants and names: SIMPLISMA, Purity,
SMCR, SMMA
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Observations

“Contrast” is present in data set

High contrast in resolved contributions gives
low contrast in resolved spectra

— Assumes pure samples

High contrast in resolved spectra gives low
contrast in resolved contributions

— Assumes pure variables
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Spectra

Solution Range

— Solution Range A

Pure sample solution

Pure variable solution

— Solution Range B
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| Spectr Solution Range

Image (concentration)
contrast
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Spectra SOIUtiOn Ra nge

— Spectral contrast
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Decreasing Angles
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Decreasing Angles

Can be done on either the spectra (sample)

or concentration (variable) mode! —_—
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Energy dispersive spectrometry (EDS)
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Wire Compositions
(@) 100% Ni
(b) 36% Ni, 64% Fe
(c) 70% Cu, 30% Zn
(d) 16% Cr, 84% Fe
(e) 13% Mn, 4% Ni, 83%Cu
(f) 100% Cu
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Spectral contrast Image contrast
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TOF-SIMS of PMMA and

Deuterated Polystyrene

* Positive SIMS spectrum on 64x64 grid
e 301 mass channels (AMU)
* Thanks to Physical Electronics for the data

SIMS of PMMA and Deuterated Polystyrene
T T

18 E;EI EIGENVECTOR

A4 RESEARCH INCORPORATED



MCR Solutions for Concentrations

Not O

Larger range Smaller range

Concentration Contrast Spectral Contrast
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MCR Solutions for Spectra
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Spectral contrast

But concentration images
nearly identical
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Contrast Constraint Conclusions

* Contrast in the spectra or images
(concentrations) is problem dependent

— Often one of the extremes is “correct” solution
— Can be implemented as a constraint in MCR

* Ability to maximize spectral or concentration
contrast helps elucidate range in solutions
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Homeopathic ICA

« Are principal components independent?
o Uncorrelated does not mean independent
o Orthogonal does not mean independent

o Independent variables are orthogonal and
uncorrelated
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Homeopathic ICA
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Homeopathic ICA

map of individual components and mixtures
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Wire Compositions
(@) 100% Ni
(b) 36% NI, 64% Fe
() 70% Cu, 30% Zn
(@) 16%Cr, 84% Fe
(@) 13% Mn, 4% Ni, 83%Cu
() 100% Cu
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X1

Homeopathic ICA

X2 Prob. Joint. Prob. Marg. Prob.
0 X1=0, X2=0 1/4 (1/2)%(1/2)
1 X1=0, X2=1 1/4 (1/2)%(1/2)
0 X1=1, x1=0 1/4 (1/2)%(1/2)

1 X1=1, X2=1 1/4 (1/2)%(1/2)
X2 Joint Prob. Marg. Prob.
0 X1=0, X2=0 0 (1/2)%(1/2)
0 X1=0, X2=1 1/2 (1/2)%(1/2)
1 X1=1, X2=0 1/2 (1/2)%(1/2)
1 X1=1, X2=1 0 (1/2)%(1/2)
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Homeopathic ICA

X1 X2
1 0
1 0
0 1
0 1
0 0
0 0

X1=0, X2=0
X1=0, X2=1
X1=1, X2=0
X1=1, X2=1

Joint Prob Marg. Prob
8/12 (10/12)x(10/12)
2/12 (10/12)x(2/12)
2/12 (2/12)x(10/12)
0 (2/12)x(2/12)
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Homeopathic ICA

X2 Joint Prob. Marg. Prob
0 X1=0, X2=0 0.67 0.69
0 X1=0, X2=0 0.17 0.14
1 X1=1, X2=0 0.17 0.14
1 X1=1, X2=1 0 0.03
0
0
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Ni and Cu System
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Energy dispersive X-ray spectrometry (EDS)
128x127 pixels, 150 keV values
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Relative Intensity

a) ICA original spectra b) ICA 8x zero- appended data c) Reference
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Energy dispersive X-ray spectrometry (EDS)
128x128 pixels, 1005 keV values
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a) ICA original spectra b) ICA wavelet data c) Reference spectra
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Other Ways of Focusing on
Variance of Interest

e Maximum Autocorrelation Factors — find
variance with spatial correlation

* Maximum Difference Factors — find variance
with spatial transitions (multivariate edge

detection)

e Clutter filters—ignore variance from specified
regions
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MAF

gray-scale image /

ratio of gray-
/ scale/1D
Ist derivativ/\

MAF finds locations in the image where the ratio of gray-scale
to first derivative 1s a maximum
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MAF on SIMS Image of PVA

Image of Scores on PC 1 (10.03%) Image of Scores on PC 1 (1.81%)
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MDF

gray-scale image /
/ gray-scale/1D

Ist derivativ/\

2nd derivative

/\/ DD TN

MDF finds locations in the image where the ratio of first to
second derivative 1s a maximum
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MDF on EDS of Wires
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Clutter Filters

* Define areas where only variance is due to
noise or other unwanted variation

* Develop filter to minimize this variance
— Generalized Least Squares (GLS) Weighting
* Inverse square root of clutter covariance

— External Parameter Orthogonalization (EPO)
* Project out first PCs of clutter covariance
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Define Clutter Areas

Image of Scores on PC 1 (10.03%)

Only variation in marked
areas is due to “noise”

Center each area to its
own mean, then combine
areas

Develop GLS weighting
from combined areas
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GLS Filtered PVA

Image of Scores on PC 1 (10.03%) Image of Scores on PC 1 (3.25‘3/)

PCA with GLS
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Conclusions

 Many ways to increase the contrast in
multivariate images

* Method of choice depends on what features
are to be emphasized
— Spectral contrast
— Image contrast
— Continuous areas
— Edges
— Specific analytes
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Tools Readily Available

* PLS Toolbox & MIA_Toolbox
— for MATLAB users

e Solo+MIA

— stand-alone for

e Windows
* Mac
* Linux
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