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Hyperspectral Image Analysis

• Images where every pixel contains complete 
spectrum
– Possible with nearly every type of spectroscopy 

and spectrometry

• Goal of analysis is usually to obtain maps of 
chemical species
– Can be for specific analytes, elements or …
– Seldom have completely specific channels



Contrast Enhancing Methods
• Principal Components Analysis (PCA)
– Nice pictures but not chemically meaningful

• Multivariate Curve Resolution (MCR)
– Contrast constraints

• Independent Components Analysis (ICA)
– Homeopathic ICA

• Other methods
–Maximum Autocorrelation Factors (MAF)
–Maximum Difference Factors (MDF)
– Clutter Filters 



Multivariate Curve Resolution 

• MCR attempts to resolve mixtures into pure 
spectra and concentrations without using 
prior information
–MCR typically solved with Alternating Least 

Squares (ALS)
– Typically solved with constraints, e.g. non-

negativity, continuity
– Other variants and names: SIMPLISMA, Purity, 

SMCR, SMMA
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Observations

• “Contrast” is present in data set
• High contrast in resolved contributions gives 

low contrast in resolved spectra
– Assumes pure samples

• High contrast in resolved spectra gives low 
contrast in resolved contributions
– Assumes pure variables



Solution Range A 

Solution Range B 
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Decreasing Angles



Decreasing Angles

Can be done on either the spectra (sample) 
or concentration (variable) mode!



Energy dispersive spectrometry (EDS)

M.R. Keenan, Multivariate Analysis of Spectral Images Composed of 
Count Data, In: H. F. Grahn, P, Geladi (eds.), Techniques and Applications 
of Hyperspectral Image Analysis, pp. 89-126, Wiley & Sons, 2007
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Spectral contrast    Image contrast
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TOF-SIMS of PMMA and
Deuterated Polystyrene

• Positive SIMS spectrum on 64x64 grid
• 301 mass channels (AMU)
• Thanks to Physical Electronics for the data
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MCR Solutions for Concentrations

Concentration Contrast Spectral Contrast

0
Not 0

Larger range Smaller range
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Spectral Contrast
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Spectral contrast
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Image contrast
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Contrast Constraint Conclusions

• Contrast in the spectra or images 
(concentrations) is problem dependent 
– Often one of the extremes is “correct” solution
– Can be implemented as a constraint in MCR

• Ability to maximize spectral or concentration 
contrast helps elucidate range in solutions 



Homeopathic ICA

l Are principal components independent?
l Uncorrelated does not mean independent
l Orthogonal does not mean independent
l Independent variables are orthogonal and 

uncorrelated
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Homeopathic ICA
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Homeopathic ICA



29

X1 X2 Prob. Joint. Prob. Marg. Prob.

1 0 X1=0, X2=0 1/4 (1/2)ˣ(1/2)

1 1 X1=0, X2=1 1/4 (1/2)ˣ(1/2)

0 0 X1=1, x1=0 1/4 (1/2)ˣ(1/2)

0 1 X1=1, X2=1 1/4 (1/2)ˣ(1/2)

X1 X2 Joint Prob. Marg. Prob.

1 0 X1=0, X2=0 0 (1/2)ˣ(1/2)

1 0 X1=0, X2=1 1/2 (1/2)ˣ(1/2)

0 1 X1=1, X2=0 1/2 (1/2)ˣ(1/2)

0 1 X1=1, X2=1 0 (1/2)ˣ(1/2)

Homeopathic ICA
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X1 X2 Joint Prob Marg. Prob

1 0 X1=0, X2=0 8/12 (10/12)ˣ(10/12)

1 0 X1=0, X2=1 2/12 (10/12)ˣ(2/12)

0 1 X1=1, X2=0 2/12 (2/12)ˣ(10/12)

0 1 X1=1, X2=1 0 (2/12)ˣ(2/12)

0 0

... ...

0 0

Homeopathic ICA



31

X1 X2 Joint Prob. Marg. Prob

1 0 X1=0, X2=0 0.67 0.69

1 0 X1=0, X2=0 0.17 0.14

0 1 X1=1, X2=0 0.17 0.14

0 1 X1=1, X2=1 0 0.03

0 0

... ...

0 0

Homeopathic ICA



Ni and Cu System

Energy dispersive X-ray spectrometry (EDS) 
128x127 pixels, 150 keV values 



a) ICA original spectra                b) ICA 8x zero- appended data   c) Reference 
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b) c) d)
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Other Ways of Focusing on 
Variance of Interest

• Maximum Autocorrelation Factors – find 
variance with spatial correlation

• Maximum Difference Factors – find variance 
with spatial transitions (multivariate edge 
detection)

• Clutter filters– ignore variance from specified 
regions 
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MAF
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gray-scale image

1st derivative

-10 -8 -6 -4 -2 0 2 4 6 8 10

ratio of gray-
scale/1D

MAF finds locations in the image where the ratio of gray-scale 
to first derivative is a maximum
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MAF on SIMS Image of PVA

PCA MAF
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MDF

-10 -8 -6 -4 -2 0 2 4 6 8 10

gray-scale image

1st derivative

2nd derivative
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gray-scale/1D

1D/2D

MDF finds locations in the image where the ratio of first to 
second derivative is a maximum

40
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MDF on EDS of Wires

PCA MDF
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Clutter Filters

• Define areas where only variance is due to 
noise or other unwanted variation 

• Develop filter to minimize this variance
– Generalized Least Squares (GLS) Weighting
• Inverse square root of clutter covariance

– External Parameter Orthogonalization (EPO)
• Project out first PCs of clutter covariance
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Define Clutter Areas

Only variation in marked 
areas is due to “noise”

Center each area to its 
own mean, then combine 
areas

Develop GLS weighting 
from combined areas
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GLS Filtered PVA

PCA PCA with GLS



Conclusions
• Many ways to increase the contrast in 

multivariate images
• Method of choice depends on what features 

are to be emphasized
– Spectral contrast
– Image contrast
– Continuous areas
– Edges
– Specific analytes



Tools Readily Available

• PLS_Toolbox & MIA_Toolbox
– for MATLAB users

• Solo+MIA
– stand-alone for 
• Windows
• Mac 
• Linux
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