A Comparison of ANNs, SVMs & XGBoost on some Challenging Classification Problems

Barry M. Wise, Donal O'Sullivan and Manuel A. Palacios

Eigenvector Research, Inc.

Challenging?

What do you mean by challenging?

Classification problems where we're expecting 80-90% correct (not close to 100%!)

Why?

- Only kind we get!

Outline

- Classification methods
- The data sets
- Results
- Conclusions

Classification Methods

- PLS-DA Partial Least Squares Discriminant Analysis
- ANN Artificial Neural Network
- SVM Support Vector Machine
- XGBoost Boosted Trees Classification

Partial Least Squares Discriminant Analysis (PLS-DA)

- A true workhorse of classification methods!
- Use logicals (0,1) in Y-block to indicate if sample belongs to a class or not → dummy variables
- Develop PLS model to predict class block

prior probability and set costs

 Thresholds set between 0 and 1 to indicate if new samples are a member of each class...
 Can use Bayes theorem to set threshold and include

Artificial Neural Networks

- Artificial Neural Network (ANN) is a non-linear regression method.
- X data are presented to the ANN in the input layer. A simple single hidden-layer example:

If the input to a neuron is strong enough the neuron is activated and it affects downstream connected neurons

- ANNs defined by
- Layers and nodes in each layer and their connections.
- Weights: weight associated with each synapse, or node-pair.
- Activation function converts node's weighted input to its output, usually step-like such as tanh.
- For classification predict logicals as with PLS-DA
- Fit via least squares optimization

Support Vector Machines

Support Vector Machines (SVMs) are a set of related supervised learning techniques for **classification** and **regression** which became popular over the past decade.

SVM Classification

SVMs finds the optimal separating margin between each pair of classes.

 $min(\mathbf{w}^T\mathbf{w})$ subject to $y_i([\mathbf{w}^T\mathbf{x}_i+b])\geq 1$

Support vectors = the samples where the equality holds. The ones further out don't matter, once **w** and *b* are found

SVM Parameters

- SVM classification involves defining parameters (cost, gamma).
 - Cost: (0 infinity). When high, allow less misclassification but could cause overfitting.
 - gamma: (0 infinity). Low, linear; high local and nonlinear
- The SVM function selects automatically by default using cross-validation.

Classification and Regression Trees

Classification Tree using "iris" dataset

Regression Trees:

- Algorithm picks splitting variables & split points.
- Minimizes sum of squares of y f(x).
- Test each variable and split point picking the one which gives min sum of squares error.
- Prediction value is given by the leaf value.

Classification Trees:

 Instead of squared error uses a measure of impurity, misclassification error, Gini index, crossentropy, to select the best binary decision.

Boosting

- Classification and Regression trees have many advantages but not great accuracy, hence Boosting is used
- The motivation for boosting is to combine the outputs of many "weak" classifiers to produce a powerful classifier
- Additive boosting (Adaboost) binary classification, increases weights of observations which are misclassified and classifies again, producing a sequence of classifiers.
- Gradient Boosting applied to decision trees creates new trees which best reduce an error loss function by using gradient descent.

Why XGBoost?

XGBoost is an open-source implementation of gradient boosted decision trees

- XGBoost is a freely available (Apache License 2.0)
 http://dmlc.cs.washington.edu/xgboost.html
- Released in 2014, by UW, it is written in C++ with interfaces for many languages including Python, R, Java...
- Currently very popular with machine learning data analysts
- It is accuracy, fast, scales well with computing resources,...

...and XGBoost has Hype!

If linear regression was a Toyota Camry, then gradient boosting would be a UH-60 Blackhawk Helicopter. A particular implementation of gradient boosting, XGBoost, is consistently used to win machine learning competitions on Kaggle. Unfortunately many practitioners (including my former self) use it as a black box. It's also been butchered to death by a host of drive-by data scientists' blogs. As such, the purpose of this article is to lay the groundwork for classical gradient boosting, intuitively and comprehensively.

Compression

- Common to use PLS or PCA for compression in front of ANNs, SVMs, and XGBoost
- Full rank
 - Reduces problem size, speeds computation
- Reduced rank
 - Improves parsimony, possible better results

Data Sets

- Cervical Cancer Detection
- Breast Cancer Detection
- Infectious Disease Detection
- Hyperspectral Image for Crop Classification

Cervical Cancer

- Pap smears credited with reducing cervical cancer mortality by detecting precancerous cells, but...
- Sensitivity of Pap smears reported as 29-56%
- Abnormal Pap smear-> colposcopic examaination, but....
- Colposcopic impressions correlate with biopsies as little as 35% of the time
- Goal: develop better method to classify cervical tissue!

Colposcopic Images and Biopsies

Flourescence Images

- Combinations of
 - 3 excitation wavelengths
 - 9 emission wavelengths
 - 22 combinations measured

Similarity of Tissue Types

Breast Cancer Forecasting

- 883 Danish women, half diagnosed with breast cancer
- Plasma samples taken years before diagnosis at beginning of study, then stored
- Analyzed by proton NMR, peaks integrated

Infectious Disease Detection

- Bacteria separated
- Measured with Excitation Emission Fluorescense
- Unfolded, 670 variables
- Goal is to predict if bacteria level is above a threshold value
- 1155 Calibration samples, 58% positive
- 385 Test samples, 60% positive

The IndianPines Dataset

- Hyperspectal image of a mixed farmland area west of Lafayette, Indiana.
- 145x145 pixels
- 220 spectral channels
- Use only pixels from the Soy fields, which are of 3 types: "No till", "Min" and "Clean".
- ("Min" = "Min till")

Data Details

Soy fields types: "No till", "Till", "Clean"

4050 Soy field pixels used 82% as Calibration, 18% as Test where test pixels are contiguous areas within a Soy field

No Till: 24% (968 pixels, 784 cal, 184 test)
Min: 61% (2468 pixels; 2098 cal, 370 test)
Clean: 15% (614 pixels; 459 cal, 155 test)

PLS-DA - Cervical Cancer

Average Misclassification Rate PLSDA

Autoscaled, 5-fold Cross-validation

PLS/SVM-DA – Cervical Cancer

Average Misclassification Rate SVMDA

Average Misclassification without compression

Calibration Error = 0.08Cross-validation Error = 0.11Prediction Error = 0.16

PCA/SVM-DA – Cervical Cancer

Average Misclassification Rate SVMDA

Autoscaled, 5-fold Cross-validation

Average Misclassification without compression

Calibration Error = 0.08Cross-validation Error = 0.11Prediction Error = 0.16

PLS/XGBoostDA – Cervical Cancer

Average Misclassification Rate XGBoostDA

Autoscaled, 5-fold Cross-validation

Average Misclassification without compression

Calibration Error = 0.00Cross-validation Error = 0.14Prediction Error = 0.11

PCA/XGB-DA – Cervical Cancer

Average Misclassification Rate XGBoostDA

Autoscaled, 5-fold Cross-validation

Average Misclassification without compression

Calibration Error = 0.00Cross-validation Error = 0.14Prediction Error = 0.11

Cervical Cancer Summary

	Best models w/PLS		Best models w/PCA		No Compress
	Numer of LVs	Error	Numer of LVs	Error	Error
PLSDA	6	0.17	-	-	-
SVMDA*	20	0.06	17	0.07	0.16
XGBoostDA	18	0.11	10	0.09	0.11

*The total number of variables is 22

- PLSDA < XGBoostDA < SVMDA
- SVMDA Performs much better with compression at almost full rank, but also better in the compressed subspace.
- XGBoostDA seems less sensitive to compression.
- XGBoostDA almost always overfits the calibration, but crossvalidation consistently shows a good estimation of the actual performance of the models when compared to the test set.

Breast Cancer Detection Results

SVM-DA on Breast Cancer

XGB-DA on Breast Cancer

ANN on Breast Cancer

PLS-DA GA on Breast Cancer

Summary of Breast Cancer Resuts

- Compression is important in ANN, SVM, XGBoost
- All methods able to achieve error of ~0.17
- Success of each depends on final criteria for model selection
 - Which model do you choose?
- ANN had most models around best performance
- PLS-DA with variable selection strong contender

Disease Detection Results PLS-DA

SVM-DA on Disease Detection

Fraction Correct for ANNs with PLS Compression, Test Set Prediction

XGB-DA on Disease Detection

Disease Detection Results Summary

- All methods benefited from compression
 - PLS compression worked better than PCA
- Best error rate ~0.13 for all methods

PLS-DA on Crop Identification

Compression LVs: 1:40 {'derivative', 'snv', 'mean center'}

SVM-DA on Crop Identification

Compression LVs: 1:40
Optimize over full parameter range {'derivative', 'snv', 'mean center'});

No compression (Black horiz. line shows Test Error):

No Fill Min Clean
misclassification (CV): 0.0422, 0.0500, 0.0138
misclassification (Test): 0.0183, 0.0240, 0.0056

XGB-DA on Crop Identification

Compression LVs: 1:40
Optimize over full parameter range {'derivative', 'snv', 'mean center'});

No compression (Black horiz. line shows Test error): No Fill Min Clean misclassification (CV): 0.0425, 0.0551, 0.0174 misclassification (Test): 0.0409, 0.0508, 0.0099

Crop Identification Summary

- SVMDA gives the best performance on the Validation data for all 3 classes.
- SVMDA & XGBDA much better than PLSDA for CV or Validation data
- SVMDA and XGBDA behave similarly when PLS compression is used where error decreases rapidly up to about 10 LVs used, approximately matching no compression, then deteriorating when >15 LVs used in compression

Practical Considerations

- PLS-DA much faster than other methods
 - Allows exploration of wider preprocessing space
 - Has better diagnostics, more interpretable
- Compression speeds up other methods considerably

Overall Summary

- Useful to explore parameter options, especially compression
- SVM-DA overall winner
 - But didn't do ANNs on cervical cancer and crop detection
- XGB-DA always overfits calibration data
 - But cross-validation results largely agree with prediction results

Often, the problem is the data!

