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Abstract
Over the past dozen years, a number of powerful spectral analysis methods have been published which make 
use of orthogonalization (i.e. projection followed by weighted subtraction) of interferences or "clutter." These 
filtering methods provide a means to mitigate the effect of interferences arising from background chemical or 
physical species, instrumental artifacts, systematic sampling errors and instrument or system drift. They have 
been used very effectively with complex biological systems, remote sensing applications, chemical process 
monitoring and calibration transfer problems.

This class of methods includes Orthogonal Partial Least Squares (O-PLS), External Parameter Orthogonalization
(EPO), Dynamic Orthogonal Projection (DOP), Orthogonal Signal Correction (OSC), Constrained Principal 
Spectral Analysis (CPSA), Generalized Least Squares Weighting (GLSW), and Science Based Calibration (SBC) 
among others. All are based on the orthogonalization premise and each touts a unique ability to improve 
model performance, robustness, and/or interpretability.

Some relationships between these methods are noted, along with ties to older work. Examples are given of the 
use of the methods in calibration and classification problems in pharmaceutical, petrochemical and remote 
sensing applications.



What is an Orthogonalization Filter?

• Removes spectral patterns from data which 
are "interfering" with signal of interest

• The interfering species are historically called 
“clutter” (backgrounds, noise, interferents)

• Filters return spectra with features “removed”
• Weighted subtraction of one or more vectors
• "Soft” orthogonalization is deweighting but 

not outright complete subtraction



Some Examples Using Orthogonalization Filters
(by Eigenvector)

• In vivo Tissue identification with NIR probe
• Cancer detection using in vivo fluorescence
• Identification of arthlesclerosis in artery walls 

using NIR
• Determination of hydroxide concentration in 

high-concentration aqueous ion solutions 
using Raman spectroscopy

• Identification of chemical species in remote 
sensing



Method 1: Orthogonalization of Model

Method 2: Pre-selection of "clutter"

SOME Orthogonalization Filters

• OSC – Orthogonal Signal Correction (Wold et. al. 1998)

• OPLS – Orthogonal PLS (Trygg, Wold 2002 , patented)

• MOSC – Modified OSC (POSC - Feudale, Tan, S. Brown 2003) 

• CPSA - Constrained Principal Spectral Analysis
(J. Brown 1990 , patented)

• EPO – External Parameter Orthogonalization
(Roger, Chauchard, Bellon-Maurel 2003)

• GLS – Generalized Least Squares
(Aitken 1935, Martens et. al. 2003)

• SBC – Science Based Calibration
(Marbach 2005, patented (?))



Two General Approaches
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Orthogonal Signal Correction (OSC)

• Introduced by Wold in 1998
– “OSC paper not the clearest thing” – Johan Trygg, 

June 9, 2011

• OSC objective function



OSC Issues

• To the extent the objective function is optimized OSC 
doesn’t work
• Only works if you don’t try too hard!

• Many algorithms (at least 5) with various problems
• Factors not orthogonal to y
• Factors don’t capture maximum variance in X
• Filtered X not in same subspace as original X

• Often implemented prior to cross validation—totally 
misleading!



O-PLS
• Originally formulated as sequential algorithm 

(NIPALS based)
• Since shown to be obtainable from post-

processing conventional PLS model
• Does not improve prediction
• Claim is that model is more interpretable 

E.K. Kemsley and H.S. Tapp, “OPLS filtered data can be obtained directly from non-
orthogonalized PLS1,” J. Chemo, 23, 263-264, 2009
R. Ergon, “PLS post-processing by similarity transformation (PLS+ST): a simple alternative to 
OPLS,” J. Chemo, 19, 1-4, 2005
J. Trygg and S. Wold, “Orthogonal Projections to Latent Structures (O-PLS),” J. Chemo, 16, 
119-128, 2002.



NIR of Pseudo-gasoline Samples
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PLS Model on Component 1
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Samples/Scores Plot of spec1

R2 = 0.988
5 Latent Variables
RMSEC = 0.46945
RMSECV = 0.68306
Calibration Bias = −1.0658e−14
CV Bias = 0.0375

Percent Variance Captured by Regression Model 
-----X-Block----- -----Y-Block-----

Comp  This      Total   This      Total 
---- ------- ------- ------- -------
1   91.17     91.17    8.36      8.36 
2    7.40     98.57    7.19     15.55 
3    0.93     99.50   32.81     48.36 
4    0.46     99.96   26.18     74.54 
5    0.02     99.98   24.90     99.44 



Regular and O-PLS Filtered Regression 
Vectors
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Interpretation

• Better in previous example, but partly because 
we know what spectra should look like

• What if problem has discrete variables with 
signal that could be positive, negative or zero?

• Much harder! (see “On the Interpretability of 
O-PLS Models”)

• Working on developing better understanding 
of when it will work and when it won’t



Orthogonalize Model



Pre-selection Methods…

• CPSA - Constrained Principal Spectral Analysis
(J. Brown 1990, patented)

• EPO – External Parameter Orthogonalization
(Roger, Chauchard, Bellon-Maurel 2003)

• GLS – Generalized Least Squares 
(Aitken 1935)

• SBC – Science Based Calibration
(Marbach 2005, patented (?))
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• Identical
• Choose # of PCs

• Quite similar
• Down-weight by 

scale of eigenvalues

All the same…
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Clutter Covariance

€ 

Xc = (X1,c − x 1,c ) + (X2,c − x 2,c ) + ...

€ 

C =
Xc
TXc

N −1

Clutter source 1 Clutter source 2
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Covariance to GLS Weighting Matrix

€ 

C = VS2VT

€ 

G = VD−1VT

€ 
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−1 =

1
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g2
+1

with Large g è 1, 
dimension 
unaffected
Small g è 0, 
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Choosing Components
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Other Similar Pre-selection Filters…
• Extended Mixture Model (Extended Least 

Squares) orthogonal filtering for Classical 
Least Squares (CLS) models!

Target (Calibration) Spectra

Starget

Clutter Spectra

Sclutter

c = xS(STS)-1

Pseudo-inverse is an 
orthogonalization!

Equivalent to full-rank 
EPO / CPSA model



Pre-selecting Clutter

How to get clutter?
Look at differences in samples 

which should otherwise be 
the same.

In classification – all samples 
within a class should 
nominally be the same!

Use Calibration itself! Filter
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More on How to Get Clutter

• Pure component spectra of known 
interferences

• Subspace spanned by 
– samples where analyte of interest is not present
– variation in data that is all of the same class 
– differences between samples where analyte of 

interest is (nearly) the same, e.g. y-gradient
– repeat measurement of blanks

• Make it up! e.g. polynomial baseline shapes



Y-gradient Method

• Sort samples by y (reference) values
• Take differences between adjacent samples
• Weight X-differences by inverse of difference 

in y values 
• Deweight by covariance of differences (GLS) or 

orthogonalize against some number of PCs 
(EPO, ELS, EMM, PA-CLS)



Orthogonalization Filters
Filter Soft/

Hard
Adj. 
Params

Clutter source Improves Prediction?

OSC Hard # LVs Part of X orthogonal to y No, but reduces models 
complexity

O-PLS Hard # LVs Part of X-model space orthogonal 
to X’y

No, but improves interpretation

MOSC Hard # PCs Part of X orthogonal to y Maybe

CPSA Hard # PCs A priori, includes pathlength adj. Yes

EPO Hard # PCs Classes, y-gradient or a priori Yes

DOP Hard # PCs Synthetic reference samples Yes

GLS Soft Shrinkage a Classes, y-gradient or a priori Yes

SBC Soft # PCs (20?) Repeat samples or blanks Yes

EMM Hard None A priori from known interferents, 
clutter subspace

Yes, CLS model

ELS Hard # PCs Clutter subspace Yes

PA-CLS Hard None/# PCs Baseline shapes, residuals Yes, CLS model

WLS Soft Regularization Noise measurements Yes



We think it is useful to use Clutter!



Example Classification Data
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• Mid-IR spectra of food grade oils
• Classify oils, detect adulterated olive oil



Calibration with MSC
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Cal and Test with MSC
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With MSC and GLS
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Zoom on Olive Oil
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Zoom on Corn and Safflower Oil
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Zoom on Corn Margarine
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With MSC and EPO
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Indian Pines Data

• Classic image data set used in many 
publications

• Crop area near West Lafayette, Indiana
• Ground truth identified 16 know crop areas
• Data from AVIRIS: Airborne Visible/Infrared 

Imaging Spectrometer
• 220 channels, 400-2500nm



Indian Pines Image



Soybean Fields
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PLS-DA, Mean-Center Only

Class Probability Image



PLS-DA, EPO 1-PC
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Example Calibration Data
• IDRC-2002 Shootout data
• NIR Transflectance of pharmaceutical tablets
• Goal is to predict assay value
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Calibration and Test with MSC & MC
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With MSC, GLS & MC
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With MSC, EPO & MC
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With MSC, ELS and MC
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Conclusions
• Main differences between methods are
– How the clutter is defined
– Whether the de-weighting is hard or soft

• Filtering methods are more similar than 
published statements might have you believe

• Methods achieve similar results, model 
performance generally improved (except O-PLS, OSC)

• Interpretation of filtered results can be 
challenging – except OPLS (mostly)


