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2 

A B S T R A C T 1 
 2 
In a recent paper, we proposed Homeopathic ICA, which is a simple method to expand the use of 3 
independent component analysis (ICA). Adding sparsity enabled the resolution of data sets into the 4 
chemical constituents that could not be resolved with conventional ICA. The data sets used were 5 
dominated by the pure components to be resolved, however, one of the successfully resolved data sets 6 
contained mixtures in addition to the pure components.  7 
 8 
This paper will show in more detail the role of sparsity in ICA and study tolerance for mixtures in 9 
addition to pure components. A diagnostic value is introduced to determine the optimal sparsity for a 10 
proper resolution of mixtures. As shown in the previous paper sparsity may mean noise level 11 
intensities. The relation between Homeopathic ICA and quartimax will be shown. Matlab code is 12 
included for efficiently performing Homeopathic ICA. In addition to simulated data we will discuss 13 
new results obtained on energy dispersive X-ray spectroscopy (EDS) of a CuNi diffusion couple and a 14 
braze interface. In addition, the results from magnetic resonance imaging (MRI) of a binary mixture 15 
will be shown. 16 
 17 
1. Introduction 18 
 19 
As we have shown in a previous paper it is possible to expand the use of ICA by adding sparsity to the 20 
data [#1039]. This can be done simply by adding zeros to the data set or by applying the Haar-wavelet 21 
transformation. The latter has the advantage that the size of the data matrix does not increase, which 22 
significantly reduces the calculation time. The term homeopathic was used for this version of ICA since 23 
we seemingly 'dilute' the data set with zeros, while improving the performance of ICA.  24 
 25 
The method was explained for simple simulated data, where only pure components were present. 26 
However, one of the actual (not simulated) data sets did have mixtures of the two pure components in it 27 
and could be resolved properly. This paper will study how ICA can resolve data where mixtures are 28 
present in addition to the pure components. Simulated data will be used to explore the behavior of ICA 29 
with mixture data present. A diagnostic measure will be introduced to determine the optimal ICA 30 
solution. In addition to examples with simulated data we will discuss new results obtained on energy 31 
dispersive X-ray spectroscopy (EDS) of a CuNi diffusion couple and a braze interface. New results 32 
obtained on magnetic resonance imaging (MRI) of a binary mixture system will also be shown. 33 
   34 
2. Theory 35 
 36 
In the previous paper [#1039] we discussed how the fastICA algorithm (#1007) uses excess kurtosis 37 
(by default) to achieve non-gaussianity of the components (#1064). For an array x with n elements (for 38 
example, the scores of a principal component scores model of a data set) the excess kurtosis is 39 
calculated as follows, see Equation (1) 40 
 41 
 42 
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In this paper, we will also use the raw kurtosis, defined as follows. 1 
 2 
𝑘*+, = 𝑘!"#!$$ + 3           (2)  3 
 4 
In addition, we will also discuss the use of the skewness. 5 
 6 
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 8 
For an ideal uniform distribution, the value of the raw kurtosis is 1.80, for the excess kurtosis -1.2 and 9 
for the skewness the value is zero. An example of a (not ideal) uniform distribution is shown in Figure 10 
1a. For an ideal normal distribution (mean of 10, standard deviation of 0.2) the raw kurtosis is 3.0. For 11 
an example see Figure 1b. The reason for subtracting the value 3 from the raw kurtosis is to have a 12 
value of zero for the excess kurtosis for a normal distribution. The skewness for this distribution is 13 
zero. 14 
 15 
As discussed in the previous paper (#1039) adding zeros to a data set is the basis for Homeopathic ICA. 16 
As an example, we use the data on which the normal distribution of 10000 data points in Figure 1b is 17 
the basis and add 50000 zeros (5 blocks, where a block is defined as the size of the original data set). 18 
The distribution of the resulting sparse data is shown in Figure 1c. 19 
 20 
The narrow peak results in a high value of the raw kurtosis (4.2) and the excess kurtosis (1.2). 21 
When the distribution is asymmetrical with a long left tail skewness has a negative value. Similarly, a 22 
long tail to the right produces a positive value for skewness, 1.79. When we have a sparse data set 23 
dominated by zeros, as discussed in the previous paper, it is like a right skewed distribution with a 24 
positive skewness.  25 
 26 
The choice of the absolute value of the excess kurtosis for fastICA [#1007] is clear from this image. 27 
The goal of ICA is to make the distributions non-Gaussian. The value of the absolute excess kurtosis is 28 
zero for a Gaussian distribution and becomes positive when deviations of Gaussianity occur in the 29 
directions of wide (uniform) distributions and narrow (sparse) distributions. 30 
 31 
 A dataset with only pure components does not have independent contribution profiles. When adding 32 
zeros, the contribution profiles becoming more and more independent. A linear combination of these 33 
sparse independent contribution profiles will be less sparse. By optimizing for sparsity, using the 34 
absolute excess kurtosis, these narrow, sparse independent contribution profiles are found. 35 
 36 
As was discussed before (1), sparsity could be introduced to a data set by actually adding zeros to the 37 
data set or by applying the Haar transformation. However, the effect of adding zeros on the variance-38 
covariance matrix, which is the basis in the fastICA calculations, can also be calculated without 39 
actually adding zeros. This approach is obviously faster than actually adding zeros and also faster than 40 
performing the Haar transformation on the data set. A program that performs homeopathic ICA in this 41 
manner is available through the Matlab file exchange (*). The help files of this and additional programs 42 
are shown in Appendix A. 43 
 44 
As shown in the previous paper and ‘infinite’ number of zeros must to be added to a data with mutually 45 
exclusive contributions of pure components to resolve the pure components. There is, however, for this 46 
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also a faster approach possible. FastICA works with centered data with, by definition, the mean as the 1 
origin. When adding an infinite number of zeros, the mean converges to zero. Resulting in the 2 
following equation 3 
 4 

lim
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 6 
Where n is the total number of elements. 7 
 8 
which equals 9 
 10 
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 12 
 13 
In the fastICA algorithm the internal results are length scaled. As a result, the denominator has a 14 
constant value of one. When n is very large the constant -3 is negligible, so the equation becomes. 15 
 16 
lim
𝑛→∞

𝑘!"#!$$ = 𝑛∑ 𝑥./-
.01           (4c) 17 

  18 
The quartimax criterion is as follows.  19 
 20 
𝑞 = ∑ ∑ 𝑏.2/

-$3!#
.01

-
201            (5) 21 

         22 
 23 
Where q is the quartimax value and n the number of orthogonally rotated vectors with nspec spectra, 24 
where the original vectors are, for example, scores (contributions) resulting from singular value 25 
decomposition (#3000). The rotated vectors in matrix B have q maximized. This rationalizes that the 26 
excess kurtosis for a high (infinite) number of zeros (Equation 4c) is proportional to the quartimax 27 
criterion in Equation 5.  28 
 29 
3. Materials and methods 30 
 31 
3.1 Simulated data set for mixture study 32 
 33 
For the mixture study the following data sets were constructed. The data matrix S with the 34 
contributions for the data has the following composition. 35 
 36 

𝐒 = -1		1		1	⋯⋯1		0		0		0	⋯⋯0
	0		0		0	⋯⋯0	1		1		1	⋯⋯12         (6) 37 

 38 
         39 
 40 
The size of S is ncomp × nspec (number of pure components by number of spectra), which is in our 41 
case 2	 × 	2000. There are 1000 ones and 1000 zeros on the first row, and the reverse on the second 42 
row. The rows of S are the contributions of two spectra in matrix A, size nvar × 	ncomp, where nvar is 43 
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the number of variables, see Equation 7. The orientation of the data set is according to the conventions 1 
used in ICA, where the independent components are in rows (#1007). 2 
 3 
𝐗 = 𝐀𝐒              (7) 4 
 5 
The first column of A contains a Gaussian shaped spectrum with mean at data point 25 and a standard 6 
deviation of 10 and the second column contains a spectrum with a mean at data point 75 and a standard 7 
deviation of 10. The total number of data points for each Gaussian is 100. The contributions in S and 8 
the spectral data set A, form the bases of dataset X, size nvar ×nspec. The term contributions is used 9 
instead of concentrations, since there is generally an unknown multiplicative factor between the actual 10 
concentrations and the values resulting from mixture analysis type of data analysis. 11 
 12 
The maximum values of the matrices A and S, and thus of X are one. Uniformly distributed noise with 13 
a range from -.05 to 0.05, which is 10% of the maximum intensity in the data, was added to X. The 14 
matrix A is, in ICA terminology, called the mixing matrix. In our case A contains the spectra associated 15 
with the independent contributions in S.  16 
 17 
Several versions of the data set are created in the form Xn, where n represents the number of mixtures 18 
added. The mixtures in a row are random uniformly distributed values between 0 and 1 and are added 19 
to the matrix S. The mixtures are ordered according to composition for plotting purposes. For a value 20 
of x in element j in the first row the value for the corresponding element in the second row is (1-x). The 21 
noise described above is also added to these mixtures. The four datasets created are X0 (which is 22 
identical to X), X600 and X1600 and X5000. 23 
 24 
3.2 Actual data 25 
 26 
3.2.1 Cu-Ni diffusion couple  27 

Cu-Ni is a simple binary system with complete solid solubility across the entire compositional range. 28 
This sample is a diffusion couple that contains pure copper and pure nickel, as well as, a concentration 29 
gradient through the diffusion zone. The sample was imaged with Energy Dispersive X-ray 30 
Spectrometry (EDS) using a 7 kV accelerating voltage. Under these conditions, only the highly 31 
overlapping L emission lines of Cu and Ni are excited, and the data set analyzed here consisted of 150-32 
channel spectra covering the range of 0.15 to 1.64 keV acquired at each of 15360 pixels of the 128 × 33 
120 pixel image. Complete details describing how the sample was fabricated and imaged can be found 34 
in [#979] together with an analysis of an expanded version this data set using multivariate curve 35 
resolution (MCR-ALS).  36 
 37 
3.2.2 Braze  38 
 39 
The braze data set is an EDS spectral image comprising 16384 spectra (pixels). Each spectrum was 40 
acquired with 0.01 keV resolution, and spanned the range from 0.2 to 10.24 keV (1005 channels total). 41 
The sample itself is braze joint between a copper-silver braze material and an iron-nickel-cobalt alloy, 42 
with titanium present at the interface to promote adhesion. The copper and silver in the braze are 43 
largely phase-separated leading to a sample consisting of four distinct chemical phases. Additional 44 
information about data acquisition conditions is contained in [#1013]. 45 
 46 
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3.2.3 Nuclear Magnetic Resonance (NMR) of a binary mixture 1 

For details about the sample and its analysis see (#805). A simple phantom was constructed from PVC, 2 
see Figure 2, with two compartments separated by a thin plastic sheet, forming a wedge. The first 3 
compartment contained 0.5 mM MnCl2 and the other compartment 8 mM NiCl2. The phantom was 4 
scanned by NMR to obtain a series of 15 T2 relaxation images of 256× 256 pixels. The images were 5 
acquired of a 5mm thick plane in the center plane, parallel to the bottom, of the phantom, resulting in 6 
mixture data in the area of the plastic sheet separating the pure components. The series of 15 T2 7 
relaxation images exhibit an exponential decay, which is different for the two components, and a 8 
mixture of the two decays for the mixtures. The T2 value is the inverse of the exponential decay 9 
constant. The theoretical T2 values for this sample are 29.6 ms for MnCl2 and 150 ms for NiCl2. The 10 
experimental values obtained in the paper are 28.2 ms and 137.7 ms, respectively.  11 
 12 
3.3. Data analysis 13 
 14 
All calculations were performed using Matlab Version 9.1 (Mathworks, 3 Apple Hill Drive, Natick, 15 
MA 01760-2098) on a MacBook Pro with the OSX El Captain. The ICA functions used in this paper 16 
were written by the authors. The help files of the functions are show the Appendix and are the 17 
functions available on the Matlab side with user contributions 18 
(https://www.mathworks.com/matlabcentral/fileexchange/). For the kurtosis option the results of our 19 
programs are virtually identical to the results of the FastICA package (Helsinki University of 20 
Technology, Laboratory of Computer and Information Science, P.O. Box 5400, FI-02015 HUT, 21 
FINLAND), available through the internet [#2000]. 22 
 23 
4. Results and discussion 24 
  25 
4.1 Simulated data sets 26 
 27 
It is important to realize that what we want to achieve is a solution that represents the components we 28 
created the mixtures from. We will call this solution the correct solution. If a solution provided by ICA 29 
is not the correct solution it does not mean that there is a problem with the ICA technique. It means that 30 
the components of the correct solution are not the most independent linear combination of the data in X 31 
(Equation 7).  32 
 33 
For a proper pre-diagnostic value, we need to realize that fastICA is based on the same space as 34 
principal components (PCA), using whitened (autoscaled) variables (mean is zero and standard 35 
deviation is one) transformed by an orthonormal transformation (rotation) (#1007). Therefore, the two 36 
independent components (contributions) we need for the correctly resolved simulated data set will have 37 
a correlation coefficient of zero. 38 
 39 
This means that the contributions of the pure component contributions used in the simulated data must 40 
also have a correlation coefficient of zero (with added zeros!). Since we work with simulated data we 41 
can easily check this. 42 
 43 
One must realize that uncorrelated contributions are not necessarily independent. For example, a series 44 
of points randomly distributed on a circle has a correlation coefficient of zero, even though there is a 45 
well-defined relation between the data points. Therefore, the diagnostic of the correlation coefficient a 46 
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value of zero for the contributions of the correct solution is necessary to find a proper ICA solution 1 
(resulting in the correct solution), but it is not necessarily the most independent solution. 2 
 3 
To study to effect of adding mixtures to a data set dominated by pure components the simulated data 4 
set described above was used. First, we will study the effect of adding zeros to a data set not containing 5 
mixtures, X0. For this we use the following diagnostics. 6 
 7 
First, we use the correlation coefficient between the two (noiseless) pure component contributions, with 8 
the added zeros, which we know because this is a simulated data set. 9 
 10 
Second, we will show a measure of the difference between the ICA scores (after zeros are deleted) and 11 
the two (noiseless) pure component contributions. The difference between the original data and the 12 
ICA results is based on the relative root square of the differences between two data sets. For matrices 13 
M and N the fit is calculated as follows: 14 
 15 

𝑟𝑟𝑠𝑠𝑞 =
∑ ∑ 			(5!,

#-./0
,$% '-!,)&

#1.20
!$%

∑ ∑ 			5!,
#-./0
,$%

&#1.20
!$%

         (8) 16 

 17 
 18 
Matrix M is the reference matrix, in this case the contributions of the original data, and matrix N 19 
represents the ICA scores. The value falls between zero and one, where the value of zero is a perfect 20 
match. 21 
 22 
The reason we use the rrssq instead of the more commonly used correlation coefficient to compare the 23 
contribution profiles is that linear combinations of the independent contributions in Equation 6 have the 24 
same shape as the original contributions (except for a 0.5/0.5 combination). Since the correlation 25 
coefficient only shows differences in shape (because the mean is subtracted in the calculation) it is not 26 
suited as a diagnostic tool for these contributions. 27 
 28 
The third and fourth diagnostics are the mutual information (MI) and the sum of the absolute values of 29 
the excess kurtosis calculated for the two (noiseless) pure component contributions. As discussed in the 30 
previous paper the MI (#1039) has a value of 0 when variables are statistically independent, otherwise 31 
it is positive (#1007). 32 
 33 
The mutual dependence (#1022) of the two variables X and Y is calculated as follows:   34 
 35 
 36 

        (9) 37 
 38 
Where p(x,y) is the true  probability of X and Y and p1(x)p2(y) the probabilities if X and Y are 39 
independent. 40 
 41 
 42 
We will first show the diagnostic values to see under which conditions the correct solution arises, 43 
which occurs when the correlation coefficient of the input contributions is zero. Consequently, the rrssq 44 

MI= ∑
x∈X
∑
y∈Y
px , y(x , y) log2

px , y(x , y)
px(x) py( y)
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value should be low. 1 
 2 
In this simulated data set and the actual mixtures that follow below the zeros are added in blocks, 3 
where each block has the size of the original data. For the data without mixtures, X0, the effect of 4 
adding zeros is shown in Figure 3a. Please note that different scales are used for the rrssq and the 5 
correlation coefficient. The lowest value for the rrssq is the last point on the graph. The highest value of 6 
the correlation coefficient is close to zero, which we expect for the correct solution. The lowest value 7 
for the rrssq and the highest, closest to zero, correlation coefficient coincide, which is exactly what one 8 
would expect. One may conclude that adding more zeros will result in a correlation coefficient closer to 9 
zero. This is indeed the case, as will be shown below. The equation for the correlation coefficient r for 10 
two vectors x and y with each n elements is. 11 
 12 

𝑟 = -∑"6'∑"∑6
7(- ∑"&'(∑ ")&)(- ∑6&'(∑6)&)

		         (10) 13 

 14 
 15 
When adding zeros to x and y the products=𝑥𝑦 ,  √𝑥, √𝑥8, etc. stay the same. However, n increases 16 
when zeros are added. This means that the terms with n become larger and larger and the terms without 17 
n can be ignored, resulting in the following limit 18 
 19 

lim
𝑛→∞

𝑟 = - ∑"6
7(-∑"&)	(- ∑6&)

          (11) 20 

 21 
 22 
Which equals. 23 
 24 

lim
𝑛→∞

𝑟 = ∑"6
7∑"& ∑6&	

           (12) 25 

 26 
 27 
This is the inner product of the length scaled vectors x and y. The added zeros do not influence the 28 
value of Equation 12. For the simulated dataset X0 the inner product of the data in Equation 6 is zero. 29 
The values of the inner products are indicated as the higher horizontal lines in Figure 3a,b,c. The lower 30 
line indicates the value of zero as reference for the correlation curve. For X0 the zero-correlation 31 
reference line and inner product line coincide. 32 
 33 
In Figure 3d we also see that the MI value is low when the correlation coefficient is close to zero. In 34 
other words, the correct solution, after adding 20 blocks of zeros, is close to independent, as the low MI 35 
value shows. The kurtosis value is inversely correlated with the MI, as expected. 36 
 37 
In Figure 3b we see the results after adding 600 mixtures, data matrix X600, which is 23% of the 38 
number of total number of cases. Interestingly, the correlation coefficient crosses the value of zero. 39 
Again, the expected behavior of a low value for rrssq coincides with the correlation coefficient of 40 
(closest to) zero. This is indicated with a vertical line. The correlation in this case will converge to the 41 
inner product of the length scaled original data, the value of which is indicated in the plot. 42 
 43 
In this case, pure components with mixtures, the starting correlation of this normalized data set is -1. 44 
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The inner product of the length scaled data of the correct contributions is positive. The correct solution 1 
lies in between. 2 
 3 
So in this case adding more and more zeros deteriorates the correct solution. Also, it is interesting that 4 
the MI value in Figure 3e of the correct solution is relatively high compared to Figure 3d. In other 5 
words, although ICA delivers the correct solution at the cursor, it is not really independent. This is an 6 
example where the correlation of the independent components is zero, while the MI is not zero.  7 
 8 
Adding more mixtures, data matrix X1400, see Figure 3c, shows that the crossing of the zero point of 9 
the correlation coefficient is after adding ever fewer zeros. Apparently, adding more than 41% mixtures 10 
is the limit for homeopathic ICA of this type of data. For the correct solution, we now see an even 11 
higher value for MI in Figure 3f. Although we show only the MI values here for the known 12 
independent components, the ICA results show the same MI tendency.  13 
 14 
Adding more mixtures leads to a deterioration of the solution since the correlation of (approximately) 15 
zero falls in the area where the rrssq is high.   16 
 17 
Before discussing the effect of adding mixtures to in more detail we will first show results at different 18 
points in the range of solutions. The original X0 data without zeros added is perfectly negatively 19 
correlated when no noise is added, so the rank is one. In our case, there is noise which will result in a 20 
second independent component (IC). This is meaningless, so the first solution will be ignored. The 21 
second solution, after doubling the size of the data with zeros, is shown in Figure 4a, e. It is clear from 22 
the rrssq plot in Figure 3a that this is a 'bad' solution from our point of view: the solution has no 23 
similarities with our reference data. This is clear from the spectra and contributions in Figure 4a, e. The 24 
results are labeled by reference to the ideal value of their correlation coefficient of zero in the titles of 25 
the top plots. This input for this solution has a negative correlation, leading to this 'bad' solution, so we 26 
refer to this as the corr<<0 solution to indicate the clear negative correlation. The results are very 27 
similar what one gets in PCA. One of the components is similar to the sum of the two components and 28 
the other one is similar to the difference of the two plots.  29 
 30 
As a second example we take the 6th point of the X0 solution (Figure 3a) (5 blocks of zeros added), the 31 
results of which are shown in Figure 4b,f, labeled corr<0. The contributions do not have a part of zero 32 
values (within the range of the noise), see Figure 4b, indicating that they are positive linear 33 
combinations of the actual pure components. Since these contributions are basically mixtures, we call 34 
them under-resolved (#698). The associated spectra in Figure 4b show negative parts, in other words, 35 
they are linear combinations with negative contributions in them. For this, the term over-resolved is 36 
used. In this type of solutions, the over/under-resolution is always accompanied by the reverse 37 
under/over resolution of the other domain. Since this aim is to reproduce the original data as good as 38 
possible in a least square sense, a deviation in one domain of the solution must be compensated by the 39 
inverse deviation of the other domain.  40 
 41 
The next example, the corr»0 solution, is taken from the 6th point (5 blocks of zeros added) of the 42 
X600 mixture solution, see Figure 3b. From the rrssq and the correlation in Figure 3b at the sixth point 43 
we expect to get close to the expected ideal solution of the spectra and contributions, as is confirmed by 44 
Figure 4c,g. 45 
 46 
As the last example, corr>0, the X1400 data, we used the solution where 20 blocks of zeros added were 47 
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added. Here we see the opposite of the corr<0 solution. Now we have under-resolved spectra and over-1 
resolved contribution, see Figure 4d,h.  2 
 3 
According to the results presented above the homeopathic ICA approach cannot be used for simulated 4 
data sets with more than 1400 mixtures. However, one can wonder if the sum of the absolute values 5 
excess kurtosis is the proper criterion of our sparsity based approach. As mentioned above (Figure 1), 6 
the raw kurtosis has a negative value for a uniform distribution, a zero value for normal distribution and 7 
a positive value for sparse distributions. By taking the absolute values of the kurtosis there will be a 8 
maximum for uniform distributions and a maximum for narrow (sparse) distributions. The problems 9 
with the solutions where only a few zeros are added distributions with a relatively high amount of 10 
uniformity occur. Figure 5 shows the histograms of the contributions in Figure 4 with the added zeros. 11 
It is clear that the ICA solution in Figure 5a is based on approximately uniform distributions. The raw 12 
kurtosis values are below 3, indicating that the excess kurtosis is negative (see Equations 1,2), resulting 13 
in positive values for the absolute excess kurtosis.  This is also clear from the plot of the absolute 14 
kurtosis values in Figure 3d,e,f. The absolute kurtosis values go through a minimum around 1 block of 15 
zeros, indicating the presence of negative values of the raw kurtosis before that minimum. The other 16 
histograms in Figure 5 show that the histograms clearly indicate sparsity. 17 
 18 
In our case the objective function is narrow (sparse) solutions, solutions based on uniform to normal 19 
distributions are incorrect. A simple solution is to use the raw kurtosis (Equation 2) instead of the 20 
absolute values of the excess kurtosis. Another possibility is to use the skewness of a solution. The 21 
absolute values of the skewness will maximize for sparse solutions, which form basically highly 22 
skewed distributions. As an example, we will use the data set X5000, see Figure 6.  23 
 24 
In Figure 6a plot of the rrssq values, as a function of the number of blocks of zeros, is shown for the 25 
sum of the absolute excess kurtosis values. The position of 1.12 blocks of zeros, indicated with a 26 
vertical line, is where the correlation of the known contributions, with added zeros, is zero. As we have 27 
seen above, this is where the correct solution occurs.  It is clear that the correct solution cannot be 28 
obtained for X5000 using the sum of the absolute excess kurtosis values, as was already concluded 29 
from Figure 3. However, when using the sum of the raw kurtosis the correct solution can be obtained 30 
with the fastICA code described in the Appendix, see Figure 6b. The raw kurtosis option is not 31 
available in the original fastICA code (#2000). Similarly, the sum of the skewness values reaches the 32 
correct solution, as shown in Figure 6c. 33 
 34 
A more detailed picture of the behavior of the kurtosis and skewness is shown in Figure 6d,e,f.  35 
This figure shows polar plots in the space of the first two principal components (PC 1 and PC 2) of the 36 
centered data with 1.12 blocks of zeros added. FastICA determines the rotation where the objective 37 
function, sum of absolute kurtosis, sum of raw kurtosis, and the sum of the (absolute) skewness values, 38 
has a maximum. The polar plots show the sum of the sum of the three objective functions as a function 39 
of the angle of rotation of the two PC’s. 40 
 41 
Figure 6d shows the polar plot of the sum of the absolute kurtosis values. This gives the incorrect 42 
solution at 25 degrees, as the rrssq value in Figure 6a shows. Figure 6e shows the polar plot of the sum 43 
of the raw kurtosis values, which results in the correct solution at 71 degrees. Figure 6f shows the polar 44 
plot of the sum of the skewness values, which again shows the correct results at 71 degrees. The correct 45 
solution shows again the by now familiar Gaussian profiles and associated contribution profiles and is 46 
therefore not shown. 47 
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 1 
Comparing Figure 6d with 6e,f shows that the maximum in Figure 6e is a local minimum in Figure 6d. 2 
This is the effect of using the raw kurtosis instead of the absolute kurtosis. 3 
 4 
Although the maxima in the solutions in Figure 6e,f are identical, it is clear that the sum of the absolute 5 
skewness value has the preference. The maxima in Figure 6f are better defined and this also causes the 6 
maximum to be found faster with iterative solutions, as was confirmed with tests. A comparison of the 7 
running time of the three objective functions for the braze data set, with the sum of absolute kurtosis 8 
defined as 100, we get 93 for raw kurtosis and 89 for skewness. These values are based on the average 9 
of 100 runs.   10 
 11 
The conclusion is that when the objective is to find a sparse solution the skewness is the best objective 12 
function for fastICA.  13 
 14 
Summarizing the behavior of homeopathic ICA for data with only pure components and data with 15 
mixtures in addition to the pure components the following. 16 
 17 

a) Data with mutually exclusive components cannot be properly resolved with fastICA. After 18 
adding more and more zeros the contributions converge towards independence (and, as a 19 
consequence, with zero correlation). Using skewness as a measure of sparsity fastICA is able to 20 
resolve the data properly after adding a high number (‘infinite’) number of zeros. 21 

b) Data with mutually exclusive components and mixtures of the components cannot be solved 22 
with fastICA. After adding zeros the contributions of the pure components reach a point where 23 
their correlation is zero without independence (adding more zeros the correlation deviates again 24 
from zero). At this point a rotation of PCA, which is achieved by fastICA, will resolve the data 25 
properly when sparsity is achieved through using skewness as the objective function. 26 

 27 
 28 
4.3.Diagnostics for correct solution 29 
 30 
With the examples of the simulated solutions we knew the solution. However, in practical cases the 31 
correct solution is not known. Therefore, a diagnostic is needed to determine the proper number of 32 
blocks to be added. Figure 7a,b,c shows a plot of the length scaled rows of matrix S (Equation 7) of the 33 
data set X5000 for different numbers of blocks added to the data set, where Figure 7b show the best 34 
solution in this series. The results vary under-resolved to over-resolved IC’s, contributions, as a 35 
function of the number of blocks of zeros added. The skewness was used as the objective function.  36 
 37 
As a first step for the calculation of diagnostic values the data in Figure 7a,b,c the absolute values are 38 
calculated of matrix S and the columns are normalized to a sum of 1. 39 
 40 

𝑧.,2 =
:$!,,:

∑ :$!,,:
#-.45
!$%

           (13) 41 

 42 
The results are shown Figure 7d,e,f. The absolute values are needed for the calculation for the 43 
diagnostics and to eliminate the sign ambiguity of multivariate methods.  44 
 45 
 46 
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In Figure 7g,h,i the reciprocal values of the quarter-norm values of all the columns of S are shown 1 
where the norm of an array x is defines as 2 
 3 
‖𝑥‖3 = (∑|𝑥|3)1/3           (14) 4 
 5 
 6 
For the quarter norm p =1/4. For normalized data the maximum is one. 7 
 8 
Comparing the graphs in Figure 7g,h,i show that the reciprocal quarter norm of the columns shows 9 
significantly higher values for the columns in S where pure components are present. Even minor 10 
deviations, such as in the first part of Figure 7g, show significantly lower values.  11 
 12 
A summary of these values can be calculated by calculating the inverse of the norm of the unfolded 13 
matrix of Z symbolized by z.  14 
 15 

𝑑𝑖𝑎𝑔𝑛 = 1

<
∑ 78

%/"#-.45×#05:-
8$%

#-.45 =
"         (15) 16 

 17 
The scaling factor ncomp results in a maximum value of one. Therefore, the values of the diagnostic 18 
are between zero and one. For a noiseless dataset with only mutually exclusive pure components the 19 
diagnostic value will be one.  20 
 21 
The presence of noise will make these values lower. The presence of mixtures will also lower the 22 
values. The maximum in the diagnostic value as a function of the number of blocks of zeros added to a 23 
data set will indicate the best solution of homeopathic ICA. 24 
 25 
Equation 15 was tested on a limited number of data sets, as will be shown below. Some fine tuning 26 
may result from testing more data sets. 27 
          28 
A Matlab program implementing this diagnostic is describe in Appendix A. Examples of this 29 
diagnostic measure are shown below. 30 
 31 
4.4.1. Simulated data 32 
 33 
Figure 8 shows the diagnostic curves resulting from Equation 15 for the simulated data sets. For 34 
fastICA the skewness was used, which is an option of the Homeopathic_ICA code described in the 35 
Appendix. It is not an option of the original fastICA code. As we have seen in Figure 3 there is no 36 
correct solution for X0 in the range shown.  For X600 the correct solution (within the resolution of the 37 
plot) is after adding 5 blocks of zeros and for X1400 the correct solution is after adding 3 blocks of 38 
zeros. Figure 6 shows that the correct solution got X5000 is approximately after adding 1.2 blocks of 39 
zeros (plotted with a finer resolution the maximum is at 1.1, which we used in Figure 7b). In Figure 8 a 40 
horizontal line indicates the diagnostic value for adding in infinite number of zeros, calculated from the 41 
contributions resulting from the quartimax rotation (Equation 5). It is important to notice that the 42 
diagnostic values are significantly different from the quartimax values as an additional diagnostic 43 
feature. 44 
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 1 
As is clear from Figure 8 the diagnostics of Equation 15 indicate the correct solution with a maximum 2 
in the diagnostic values. It is also clear that the overall diagnostic values of mixtures decrease when 3 
more mixtures are present. 4 
 5 
4.4.2 Actual data 6 
 7 
4.4.2.1 Braze data and CuNi data 8 
 9 
The next test of this diagnostic is the actual data sets described in the previous paper (#1039). The 10 
braze data set was given as an example of data with only pure components. Thus, we expect the 11 
diagnosis to keep increasing with adding zeros, as we have seen for the simulated data in Figure 8a. 12 
However, it appeared there was a maximum for the braze data set. The same is true for the CuNi  (not 13 
shown). This is not so surprising. Even when there are only areas of pure components due to the 14 
observation area of each pixel two components will be registered on interface areas. It is not clear, 15 
though, if the interface mixtures are due to an instrument artifact, due to the size of the observation 16 
area, or if there are indeed some interactions. 17 
 18 
Some minor differences can be observed between the solution at the maximum and the quartimax 19 
results. Furthermore, the maximum diagnostic value and the diagnostic value for the quartimax solution 20 
are very similar. Since we do not have additional information about these data sets it is not possible to 21 
judge the minor differences objectively. 22 
 23 
The conclusion that data sets with only pure components may not be as pure as one would expect is an 24 
important one. This leads to the important realization that, since data sets with only pure components 25 
may be rare, one must be careful with expecting that adding more blocks of zeros will lead to 26 
increasingly better solutions. An algorithm that includes a diagnostic value as described here will likely 27 
help to determine the optimal fastICA solution and avoid under and over-resolved results. 28 
 29 
4.4.2.2. NMR data of binary mixture 30 
 31 
The results of this sample are originally 256×256. In order to increase the relative amount of mixtures 32 
the top 100 rows and the bottom 70 rows and the background part of the image were deleted, resulting 33 
in an 86×92 pixel image. There is a maximum at 1.9 blocks of zeros, see Figure 9a. The maximum of 34 
the diagnostics curve is clearly higher than the quartimax value, which was not the case for the braze 35 
and CuNi data mentioned above. For this data set additional information available. The theoretical T2 36 
values of the first and second component are 150 and 29.6, respectively. The results of expressing this 37 
data set in terms of exponential profiles (#805) resulted in T2 values of 137.8 and 28.2, respectively. 38 
The T2 values of the IC’s extracted by homeopathic ICA as a function of the number of blocks added 39 
was calculated from the ratio of successive points in the exponential curves (#805) and are shown in 40 
Figure 9b,c. The T2 values of the quartimax solution were also calculated and indicated in Figure 9b,c. 41 
The maximum of the diagnostic values indicates solutions close to or within the previously calculated 42 
T2 values, while the T2 quartimax values are not close to the T2 reference values.  This indicates that 43 
the diagnostic value is a promising measure to determine the proper number of blocks of zeros that 44 
need to be used in homeopathic ICA. 45 
 46 
Result between the solution at 1.9 blocks of zeros and the quartimax solution are shown Figure 10 and 47 
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11. 1 
 2 
Figures 10a,b,c are the first resolved image of NiCl2.The side profile in Figure 10a shown the pixel 3 
values of all the rows of the image in Figure 10b and their mean. In Figure 10c the T2 profile of NiCl2 4 
is shown, together with a reference profile based on the known T2 value. Figures 10d,e,f shows the 5 
resolved results of MnCl2. Although the MnCl2 deviates somewhat from the reference profile, the 6 
results clearly show a successful resolution of the data. The results could not be improved by analyzing 7 
the whole image.  8 
 9 
In Figure 11 the results of the quartimax solution are shown. There are clear differences. The images of 10 
the solution clearly show negative intensities, typical for over resolved results, as was shown and 11 
discussed before in Figure 4h. The resolved T2 profiles in Figure 11c,f clearly show signs of under-12 
resolved results, shown in Figure 4d. Comparing Figure 11c with 11d shows that the T2 curve of NiCl2 13 
in Figure 11c has a faster decay because of a small contribution of the faster decaying MnCl2. Vice 14 
versa, the MnCl2 in Figure 11f has a slightly slower decay than the decay in Figure 10f. This example 15 
clearly shows the behavior discussed for the simulated mixtures and the advantage of applying 16 
homeopathic ICA with an optimal number of blocks of zeros added. 17 
 18 
A program to determine the optimal number of blocks to resolve the data, using the diagnostic value 19 
described above, is described in the Appendix under ICA_optimize. 20 
 21 
The robustness of the diagnostic value was tested by analyzing different versions of the NMR data set. 22 
The first sample analyzed is the complete image of 225 rows. The mixture data are not exactly in the 23 
middle of the image, therefore 35 rows of the NiCl2 compartment were deleted to obtain the largest 24 
possible symmetrical image of 190 rows. After that a succession of symmetrical image data were 25 
analyzed which each  one 10 fewer rows that the previous image up to the last image with 10 rows. The 26 
results are shown in Figure 12. 27 
 28 
The graphs shown are the T2 values of the exponential curves resulting from homeopathic ICA solution 29 
and also the T2 values resulting from the quartimax solution. 30 
 31 
 The figure show that the solutions, in terms of the T2 value calculated from the exponential decays 32 
resulting from homeopathic ICA, is stable up to about 90 rows.  After this point the T2 values start to 33 
deviate from the expected values. This is where there are no pure components are present anymore and 34 
where homeopathic ICA cannot find a proper solution anymore. 35 
 36 
The curves resulting from the quartimax solution are close to a solution within the known T2 values for 37 
the largest image, which is not so surprising because that is the image with relatively the fewest 38 
mixtures. When the images get smaller, and relatively more mixtures are present, quartimax starts to 39 
deviate more and more from the expected T2 values 40 
 41 
The results  of the images in Figures 10 and 11 were done on the image of 86 rows, which is on the 42 
edge of the stable area. This 86 row image was chosen to show a clear difference between the 43 
homeopathic ICA solution and the quartimax solutions. 44 
 45 
 46 
5. Tolerance for mixtures 47 
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 1 
Finally, the question is what the limits are for the number of observations of pure components in a 2 
mixture data set in order to resolve it properly. To study this a data set was created with 1000 mixture 3 
samples of two components. A varying number of observations of the same of two components in pure 4 
form were added. Noise was added as discussed before for the simulated data sets. The noise was 5 
different for all the data sets in the series. The optimal number of blocks of zeros to be added to get the 6 
best result according to the diagnostics in Equation 15 were calculated. The rrssq values (Equation 8 ) 7 
of the optimal solutions were determined to judge the quality of the solution. See Figure 15. 8 
 9 
The results show that good results (rrssq ≤ 0.02) after adding about 120 observations of pure 10 
components.. The total number of spectra in that case was 1100, so the percentage of observations of 11 
pure components was 11%. Of course, these are simulated data sets, so the value of this number is 12 
limited. Nevertheless, this shows that the number of observations of pure components that need to be 13 
present for Homeopathic ICA is limited. This is confirmed by the results in Figure 11, where the profile 14 
if the resolved images show a relatively small area of pure components. 15 
 16 
6. Concluding remarks 17 
 18 
It was shown above that the presence of mixtures, next to pure components, can be resolved by 19 
homeopathic ICA after adding the proper number of zeros to the data set. A diagnostic value was 20 
shown to be a promising tool to indicate the proper number of zeros to be added. This can be done 21 
automatically using an optimization procedure in a program, which is described in the Appendix. 22 
Although for data of samples with only pure components present quartimax can be used to obtain the 23 
proper solution, even for such data mixtures may be present due to the observation area of the 24 
analytical technique. A procedure using the solution determined by the diagnostic value will give likely 25 
the correct and better results. For data sets with more mixtures, such as the MRI data, the optimal 26 
results are clearly better than the quartimax results. Therefore, such a technique may be a good general 27 
application for data sets where pure components are present next to mixtures. One may wonder what 28 
alternative techniques are available. One such technique is MCR with contrast (#994, #1938). An ICA 29 
based technique has the advantage that negative intensities are dealt with properly. For noisy data, the 30 
resolved data where intensities are (close to) zero the noise is likely to cause negative intensities, since 31 
the noise cannot be properly modelled with a limited number of factors. As was shown in our previous 32 
paper, the non-negativity constrained MCR technique may cause problems (#1039). 33 
 34 
 35 
Conflict of interest 36 
 37 
The authors declare no conflict of interest. 38 
  39 



16 

Figure captions 1 
 2 
Figure 1. The raw, absolute kurtosis values and the skewness values of (a) a uniform distribution, (b) a 3 
normal distribution and (c) an example of a sparse distribution. 4 
 5 
Figure 2. A schematic representation of the phantom sample used for the NMR two component 6 
sample. 7 
 8 
Figure 3. Diagnostic values during process of adding zeros. The correlation of the known contributions 9 
(with added zeros) is shown in (a,b,c) for the data sets shown in title. The rrssq value (Equation 8) 10 
shows how well resolved contributions are reproduced by ICA. In (d,e,f) the MI values are shown of 11 
the known contributions and the sum of the absolute kurtosis values. The lower horizontal line in (a, b, 12 
c) is at zero correlation for reference. The higher horizontal line, representing the limit for the 13 
correlation values, is calculated according to Equation 12. 14 
 15 
Figure 4. The resolved spectra are shown in (a,b,c) and the contributions (without added zeros) in 16 
(c,d,e). In in (a) and (e) the results correspond to  the 2nd data point (adding 1 block of zeros) in Figure 17 
3a. In (b) end (f) the results are shown for the 6th data point (adding 5 blocks of zeros) in Figure 3a. In 18 
(c) and (g) the results of the 6th (adding 5 block of zeros) data point in Figure 3b is shown and in (d) 19 
and (h) the results of the 21st data point in Figure 3c are shown. 20 
 21 
Figure 5. The histograms of the resolved contributions in Figure (4) (with added zeros). 22 
 23 
Figure 6. The rrssq values (Equation 8) as a function of number of blacks of zeros added for (a) the 24 
sum of the excess kurtosis values (Equation 1) as the objective function in ICA, (b) the sum of the raw 25 
kurtosis values (Equation 2) and (c) the sum of the skewness values (Equation 3). The vertical lines at 26 
1.12 blocks of zeros added indicated where the correct solution can be found. 27 
In (d), (e) and (f) a plot of values the same objective functions plotted as a function of rotation angle of 28 
the principal components for the data set with 1.12 blocks of zeros added. 29 
 30 
Figure 7. The resolved results for X5000 are shown in (a,b,c) for a number of blocks of zeros added as 31 
indicated in the title. In the corresponding (d,e,f) the normalized absolute values are shown. In (g,h,i) 32 
the inverse quarter norm values are shown with the diagnostic values (Equation 15) shown in the titles. 33 
 34 
Figure 8. A plot of the diagnostic values as a function of the number of blocks of zeros added for the 35 
simulated data sets. The horizontal line indicates the value the curves converge to. These values are 36 
calculated on the resolved results obtained with the quartimax rotation (Equation 5). 37 
 38 
Figure 9. The plots of the diagnostic values of the NMR data set. In (a) the diagnostics values are 39 
shown, with the dotted horizontal line indicating the diagnostic value of the quartimax results. The 40 
vertical line in the three plots indicates the number of blocks of zeros to be added, 1.9, according to the 41 
diagnostic value, to obtain a proper solution. In (b) the T2 values of first the solutions are plotted 42 
together with the dashed lines indicating the theoretical value of 150 and the previously found solution 43 
of 137.8 (#805). The dotted horizontal line indicates the  quartimax value of 125.7, which is the value 44 
the graph converges to. Similarly, (b) shows the results for the second component with the theoretical 45 
value for T2 of 29.6, the previously calculated value of 28.2 and the quartimax value of 36.2. 46 
 47 
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Figure 10. A plot of the resolved results obtained from the NMR data set with 1.9 blocks of zeros 1 
added. In (a) and (d) on overlay plot of the columns of the resolved images in (b) and (e) are plotted, 2 
together with their mean. The resolved T2 values with references are shown in (c) and (d). 3 
 4 
Figure 11. A plot of the resolved results obtained from the NMR data set with quartimax. This is 5 
equivalent to adding an infinite number of zeros. In (a) and (d) on overlay plot of the columns of the 6 
resolved images in (b) and (e) are plotted, together with their mean. The resolved T2 values with 7 
references are shown in (c) and (d). 8 
 9 
Figure 12.  The rrssq values of a data set with 1000 mixtures as a function of the number of pure 10 
components added. 11 
 12 
Figure 13. The tolerance for mixtures. The x-axis shows how many pure components were added to a 13 
dataset of 1000 mixtures. The y-axis shows the rrssq values of the resolved contributions and the 14 
contributions used for the simulations. 15 
 16 
 17 
 18 
  19 
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Appendix 1 
 2 
1) The function simple_fastica performs homeopatic ICA and is the core of this package. 3 
 4 
I/O:  [S,A,W] = simple_fastica(D, zmult, ICAcriterion) 5 
 6 
       D is the ncomp x npixel data/scores matrix 7 
       zmult is the number of zeros to add as a multiple of npixel 8 
       ICAcriterion: { 1='abskurtosis', 2='rawkurtosis', 3='skew' } 9 
       S contains the ncomp estimated independent components 10 
       A is the mixing matrix 11 
       W is the unmixing matrix 12 
 13 
2) The function Homeopathic _ICA is a user friendly function that performs 14 
commonly used pre- and post processing related to the proper use of simple_fastica. 15 
 16 
Homeopathic_ICA performs independent component analysis with novel options 17 
[S,A]=Homeopathic_ICA (data, ncomp, z_mult, ICA_criterion, flag_poisson, offset); 18 
The function calls simple_fastica. The function takes care of the data 19 
reduction, changes sign of output to obtain positive results and has 20 
Poisson scaling as an option. 21 
INPUT: data: data matrix, independent components have to be in rows 22 
      ncomp: number of independent components 23 
      zmult (optional): number of zeros to add as multiple of # of columns, 24 
          may be a fraction this is important for homeopathic ICA (1), 25 
          default is 0. 26 
      ICA_criterion (optional): 1 uses absolute value of kurtosis, often 27 
          used as a default criterion, 2 uses raw kurtosis, which has  28 
          advantages for sparse data and 3 uses skewness, default is 3 29 
      flag_Poisson (optional): performs Poisson scaling, 0 no Poisson 30 
      scaling, 1 Poisson scaling, default is 0. 31 
      offset (optional): offset for Poisson, down weigths variables with 32 
          low intentisy, typical values 1-3, default is 0. 33 
OUTPUTS:S contains the length scaled resolved independent components (rows) 34 
        A contains the resolved columns 35 
        data is reproduced as follows: A*S 36 
Author: Willem Windig, windig@eigenvector.com 37 
Functions used: simple_fastica 38 
References:  39 
  W. Windig, M.R. Keenan,  40 
  Homeopathic ICA: A simple approach to expand the use of independent 41 
  component analysis (ICA), Chemom. Intell. Lab. Syst. 142 (2015) 54-63 42 
  W. Windig, M. R. Keenan and B. M. Wise 43 
  The effects of pre-processing of image data on self-modeling image  44 
  analysis, J. Chemometrics 2008; 22: 500-509 45 
 46 
3) The function diagnostics_ICA calculated diagnostics values for ICA results 47 
 48 
INPUT: data to be evaluated, independent components in rows 49 
OUTPUT: diagnostics according to: 50 
    W. Windig, B.M. Wise, M.R. Keenan, 51 
    The role of sparsity and the behavior for mixture data in homeopathic  52 
    independent component analysis (ICA), in preparation 53 
Author: Willem Windig. windig@eigenvector.com 54 
 55 
 56 
 57 
 58 
 59 
4) The function Homeopathic_ICA_optimize automatically determines the optimal number of blocks of 60 
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zeros to be added. 1 
 2 
Homepathic_ICA_optimize finds the optimal number of zeros to add 3 
[S,A]=Homeopathic_ICA_optimize(data,ncomp,ICA_criterion,flag_poisson,offset,range); 4 
INPUT: data: data matrix, independent components have to be in rows 5 
      ncomp: number of independent components 6 
      range (optional): range of the number of blocks used for 7 
      optimization. May have to be adjusted, for example when the optimum 8 
      optimum is around 1 block of zeros to avoid a local maximum. 9 
      Default is [0 10];      10 
      ICA_criterion (optional): 1 uses absolute value of kurtosis, ofte 11 
          used as a default criterion, 2 uses raw kurtosis, which has  12 
          advantages for sparse data and 3 uses skewness, default is 3 13 
      flag_Poisson (optional): performs Poisson scaling, 0 no Poisson 14 
      scaling, 1 Poisson scaling, default is 0. 15 
      offset (optional): offset for Poisson, down weigths variables with 16 
          low intentisy, typical values 1-3, default is 0. 17 
      range (optional): range of the number of blocks used for 18 
      optimization. May have to be adjusted, for example when the optimum 19 
      optimum is around 1 block of zeros to avoid a local maximum. 20 
      Default is [0 10];   21 
OUTPUT:S contains the resolved lengthscaled independent components (rows) 22 
      A contains the resolved columns 23 
      data is reproduced as follows: A*S 24 
      diagnostics contains the diagnostic values during optimization. The 25 
      first column contains the blocks of zeros added, the second column 26 
      contains the diagnostic values. An useful plot is generated as 27 
      follows: 28 
      [x,index]=sort(diagnostics(:,1));y=diagnostics(index,2);plot(x,y,'-*'); 29 
Author: Willem Windig,windig@eigenvector.com 30 
Functions used: Homeopathic_ICA 31 
 32 
 33 
 34 
 35 
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