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Abstract
• Multivariate calibration, classification and fault detection models 

are ubiquitous in PAT and QbD. They occur in the both the 
development of processes and their permissible operating limits, 
(i.e. models for relating the process design space to product 
quality), and in manufacturing (i.e. models used in monitoring and 
control). Model maintenance can be defined as the on-going 
servicing of these multivariate models in order to preserve their 
predictive abilities. It is required because of changes to either the 
sample matrices or the instrument response. The goal of model 
maintenance is to sustain or improve models over time and 
changing conditions with the least amount of cost and effort. This 
talk presents a roadmap (see figure below) for determining when 
model maintenance is required, the probable source of the 
response variations, and the appropriate approaches for achieving 
it. Methods for evaluating model robustness in order to identify 
models with lower ongoing maintenance costs are also discussed.
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Outline

• Introduction to Model Maintenance
– Definition and Goal
– Causes of data/model mismatch

• Identifying the need for action
– External validation samples
–Model prediction diagnostics
• Q and T2

– Setting action limits
– Determining the source of the problem
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Outline

• Model updating methods
– Adding to the calibration set
– Slope and bias adjustments
– Automatic model updating

• Instrument standardization methods
– Direct and Piecewise Direct standardization
– Spectral Subspace Transformation
– Filtering approaches:  GLS and OSC
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Outline

• Avoiding model updating
– “Brittleness” arising from preprocessing methods
–Model robustness tests

• Conclusions



Definition and Goal

• Multivariate calibration, classification and 
fault detection models are ubiquitous in PAT 
and QbD. 

• Model maintenance: The on-going servicing of 
multivariate models to preserve their 
predictive abilities.

• Goal of model maintenance: Sustain (or 
improve) models over time and changing 
conditions with the least amount of cost and 
effort
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Why Model Maintenance?

• Numerous things can cause multivariate models 
to become invalid
– samples move to a range outside original calibration 

• analyte or interferent goes beyond calibration range or occurs in unusual combination

– new variation is introduced into the samples
• new interferent or variation in physical parameter, e.g. temperature

– a change in the sample matrix causes the relationship 
between analyte and measurement to change
• change in pressure, pH, particle size, temperature

– a change in the hardware causes the analyte-
measurement relationship to change
• instrument maintenance, fiber optic change, source replacement, etc.
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Before Model Goes Online

• Develop a plan for maintenance
– Assume that updated or new calibration models will 

eventually be required
– Have a plan for how to detect the problem and what 

to do about it
– Put it in the budget!

• Measure standard samples 
– Plan for registration and amplitude shifts
– Characterize instrument in ranges important to model
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Detecting Model/Data Mismatch & 
Performance Degradation

• Model prediction diagnostics
– Spectral residual Q (or similar)
– Sample distance T2 (or similar)

• Prediction accuracy monitored via primary reference 
method
– Unlikely that change not detected by diagnostics but possible
– Risk based approach?

• Detecting that something has gone wrong easier than 
determining what has gone wrong.
– unless you are monitoring via reference method!
– ... and why aren’t you?
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Diagnostics Limits

• By default, limits for Q and T2 are generally 
provided based on some type of confidence limit
– These limit values are statistically based

• Meaningful limits require knowledge of the 
process or measurement
– Observations are needed that represent

• “bad” states
• out of spec product
• failing sensor(s) or analyzer*
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Setting Limits

• Often helpful to think in terms of failure modes
– For processes, what are the undesirable states?

• Keep in mind – we generally can’t perform experiments at 
manufacturing scale

• Is data at a smaller scale available?
– Is this data conformable with manufacturing scale data?

– Use these undesirable states as rational guides to 
setting limits on Q and T2

• Contributions are often helpful in identifying what type of 
fault

– Sometimes modeling can provide additional insight
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Example – Modeling to aid in Setting 
Limits

• Raman spectroscopic measurement of a solution 
to predict level of solute
– Lab measurement

• Controlled environment
• Failure modes
– Sample

• Solvent only
• Empty cuvette
• Wrong product

– Very high values for Q and T2 (> 8)
– What about the measurement?
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Instrumental Issues

• Potential failure modes*
– Significantly reduced power from laser

• Validation samples showed no ill effect
– Anecdotal evidence showed the system to be prone to 

x-axis registration instability
– How does this impact the outputs of the model?
– Approach

• Use an existing validation set and generate pixel shifts 
ranging from -1 to 1 pixel in steps of  0.1 pixels

• Apply model to each iteration
• Determine impact on prediction, Q, and T2
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Impact
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How to Select Limits

• Main consideration:  impact on prediction 
error
– Decision:  use extreme values or summaries
• Use RMSE for prediction error and mean values for Q 

and T2

– Choose an acceptable level of impact on 
prediction error
• Corresponding values for Q and T2
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Impact on RMSE
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Impact on Q and T2
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Q and T2 impact curves fairly symmetric



Summary – Q and T2 Limits

• Need to identify potential failure modes for 
the process or analytical measurement
– How do they impact prediction error?
• How much impact is acceptable?

–What are the corresponding values for Q and T2?
– Choose the most conservative values that will 

encompass all of the failure modes
• Modeling can be a useful aid in this endeavor
–More on that later with the model robustness tool
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Example of detecting model/data 
mismatch

• Semi-synthetic example to illustrate change 
detection issues

• NIR measurement of iso-octane interferents
(heptane, toluene, decane and eventually also 
xylene)

• CLS model to generate data along with a 
structured noise model from original data 
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Normal Operation
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Out of Range Samples
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New Interferent
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Instrument Registration Shift
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Residuals
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Diagnosis Check List

Problem Sample 
Distance T2

Sample 
Residual Q

Reference 
agreement

Standards

Out of range High Low-Moderate Good-Fair Good

New variation Fair-High High Fair-Poor Good

Relationship 
change

Fair-Moderate High Fair-Poor Good

Instrument 
change

Moderate-High High Fair-Poor Poor
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Additional Helpful Questions

• What else changed?
– New raw ingredient, change in upstream 

equipment, new process setpoint? 

• Is shift persistent or variable? 
• What does primary method say about 

interferents? 
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Determining the cause of the problem

• Might not be obvious from model diagnostics
• Measurement by reference method helpful
• Standard samples can pin down cause 

unambiguously
• Then what?
– Expand calibration set
– Slope and bias correction
– Instrument standardization 
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Adding Samples to Calibration Set

• Out of range and new interferent problems 
can usually be solved by adding samples to 
existing calibration set

• Problem: might take more than a few samples 
to “balance” calibration

• Solution: upweighting of new samples
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Slope and Bias Correction

• Simple to do
• May be appropriate for a constant shift
• Not to be used over and over!
– Indicates problem is variable interferent or 

something else

• Automated model updating?
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Standardization Methods

• Many methods available to estimate the 
response of the standard instrument from a 
different or changed instrument

• My favorites
– Direct Standardization (DS)
– Piecewise Direct Standardization (PDS)
– Subspace Standardization Transform (SST)
– Generalized Least Squares Preprocessing (GLS)
– Orthogonal Signal Correction (OSC)
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Standardization Methods
Metho
d

Number of 
meta-

parameters

Y values 
not

required
?

Use
original 

calibration
model?

Spectra 
un-

modified
? 

Transfer sets 
not function 

of Y?

Retains 
net

analyte
signal?

Can use 
generic 

standards
?

Number 
transfer 
samples 
required

DS 1 High

PDS 2 ✘ Low

SST 1 ✘ Medium

GLS 1 ✘ ✘ ✘ Medium

OSC 2-3 ✘ ✘ ✘ ✘ ✘ ✘ Medium
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Putting it all together

• Have covered the pieces
– Detecting change and performance degradation
– Identifying the problem
–Methods for updating/correcting models
– Standardization methods

• How does this all fit together?
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Model Maintenance 
Roadmap
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Avoiding Model Maintenance

• Some models more robust to new analytes
and changes in data than others

• Highly dependent on preprocessing options 
and number of factors in models

35



Robustness Tests

• Series of functions developed to test model 
against system changes
– Develop model with desired preprocessing, #LVs, 

etc.
– “Perturb” test data set
– Apply calibration model to “perturbed” data
– Look at prediction error as function of 

perturbations
– Test and compare multiple models
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Perturbations

• New analyte – add Gaussian peak of variable width 
across wavelength range

• Wavelength registration shift – shift spectra left-right 
as well as expand and contract

• Others:
– Baseline shift – change offset and slope
– Stray light – add fraction of signal before log transform
– Temperature – decrease resolution and vary path length
– Noise variation – add noise with varying bandwidth
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New Analyte
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Example Data: Corn NIR
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Test Corn Model
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Compare Models- #LVs
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Compare Models-Derivative

Wavelength (nm)

Prediction Error for Corn Moisture with no, 1st and 2nd Derivative
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Other Preprocessing
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Shift with #LVs
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Shift with Preprocessing
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Conclusions

• Plan and budget (!) for model maintenance
• Many elements
– Performance monitoring
– Problem detection and identification
– Standardization protocols
– Remodeling and revalidating

• The “Road Map” can be customized for specific 
applications

• Model robustness testing can help minimize the 
need for model updating
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