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Definition and Goal

* Model maintenance: The on-going servicing of
multivariate models to preserve their
predictive abilities.

e Goal of model maintenance: Sustain (or

improve) models over time and changing
conditions with the least amount of cost and

effort
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Why Model Maintenance?

* Numerous things can cause multivariate models
to become invalid

— samples move to a range outside original calibration

e analyte or interferent goes beyond calibration range or occurs in unusual combination

— new variation is introduced into the samples

* new interferent or variation in physical parameter, e.g. temperature

— a change in the sample matrix causes the relationship
between analyte and measurement to change

e change in pressure, pH, particle size, temperature

— a change in the hardware causes the analyte-
measurement relationship to change

* instrument maintenance, fiber optic change, source replacement, etc.
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Before Model Goes Online

* Develop a plan for maintenance

— Assume that updated or new calibration models will
eventually be required

— Have a plan for how to detect the problem and what
to do about it

— Put it in the budget!
* Measure standard samples

— Plan for registration and amplitude shifts
— Characterize instrument in ranges important to model
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Detecting Model/Data Mismatch &
Performance Degradation

Model prediction diagnostics

— Spectral residual Q (or similar)

— Sample distance T? (or similar)

Prediction accuracy monitored via primary reference
method

— Unlikely that change not detected by diagnostics but possible
— Risk based approach?

Detecting that something has gone wrong easier than
determining what has gone wrong.

— unless you are monitoring via reference method!

— ... and why aren’t you?
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Diagnostics Limits

* By default, limits for Q and T2 are generally
provided based on some type of confidence limit

— These limit values are statistically based

* Meaningful limits require knowledge of the
process or measurement

— Observations are needed that represent
e “bad” states
e out of spec product

e failing sensor(s) or analyzer”

*these may be challenging to obtain
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Example of detecting model/data
mismatch

* Semi-synthetic example to illustrate change
detection issues

* NIR measurement of iso-octane interferents
(heptane, toluene, decane and eventually also
xylene)

* CLS model to generate data along with a
structured noise model from original data
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Normal Operation
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Instrument Registration Shift
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Determining the cause of the problem

* Might not be obvious from model diagnostics

* Measurement by reference method helpful

e Standard samples can pin down cause
unambiguously

e Then what?

— Expand calibration set
— Slope and bias correction
— Instrument standardization
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Adding Samples to Calibration Set

* Out of range and new interferent problems
can usually be solved by adding samples to
existing calibration set

* Problem: might take more than a few samples
to “balance” calibration

* Solution: upweighting of new samples

e~ EIGENVECTOR

LILJ RESEARCH INCORPORATED



Slope and Bias Correction

Simple to do

May be appropriate for a constant shift
Not to be used over and over!

— Indicates problem is variable interferent or
something else

Automated model updating?
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Standardization Methods

* Many methods available to estimate the
response of the standard instrument from a
different or changed instrument

* My favorites
— Direct Standardization (DS)
— Piecewise Direct Standardization (PDS)
— Subspace Standardization Transform (SST)
— Generalized Least Squares Preprocessing (GLS)
— Orthogonal Signal Correction (OSC)
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Putting it all together

* Have covered the pieces
— Detecting change and performance degradation
— |Identifying the problem
— Methods for updating/correcting models
— Standardization methods

* How does this all fit together?
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Develop
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Preliminary study
and calibrations

Model Maintenance
Roadmap
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Avoiding Model Maintenance

 Some models more robust to new analytes

ano
* Hig
anc

changes in data than others
nly dependent on preprocessing options

number of factors in models
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Robustness Tests

e Series of functions developed to test model
against system changes

— Develop model with desired preprocessing, #LVs,
etc.

— “Perturb” test data set
— Apply calibration model to “perturbed” data

— Look at prediction error as function of
perturbations

— Test and compare multiple models
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Prediction Error

Shift with Preprocessing

Registration Shift Errors for Corn Models
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Conclusions

* Plan and budget (!) for model maintenance

* Many elements
— Performance monitoring
— Problem detection and identification
— Standardization protocols
— Remodeling and revalidating

* Model robustness testing can help minimize
the need for model updating
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