Integrating Instrument Standardization Methods into Data Preprocessing Schemes

Barry M. Wise and R. Scott Koch Eigenvector Research Inc., Wenatchee, WA, USA

Abstract

Multivariate calibration, classification and fault detection are ubiquitous in the monitoring and control of chemical and pharmaceutical processes. Model maintenance can be defined as the on-going servicing of these multivariate models in order to preserve their predictive capabilities. It is required because of changes to either the sample matrices or the instrument response. The goal of model maintenance is to sustain or improve models over time and changing conditions with the least amount of cost and effort. Instrument standardization methods are an important element in the model maintenance toolbox. The goal of instrument standardization is to map the response of a separate instrument, or the same instrument at a later time, onto the response of the master/standard instrument. Many methods have been developed for instrument standardization, including Direction Standardization (DS), many variations on Piecewise Direct Standardization (PDS), and Spectral Subspace Transformation (SST). Multivariate calibration models often include a number of preprocessing steps before the actual regression, classification or other model is applied. But how should the standardization method be integrated with the preprocessing scheme? Should standardization be done before or after preprocessing? Or even between preprocessing steps? Our experience suggests that this question does not have a universal answer, and the optimal approach is case-specific. Based on this we have developed a framework for standardization that allows insertion into calibration models before, after, or in between preprocessing steps. This preprocessing/standardization framework is presented in this talk, and several representative cases are demonstrated.

Instrument Standardization is an Aspect of Model Maintenance

- Numerous things can cause calibration models to become invalid
 - samples move to a range outside original calibration
 - new variation is introduced into the samples
 - a change in the sample matrix causes the relationship between analyte and measurement to change
 - change in pH, particle size, temperature
 - a change in the hardware causes the analyte-measurement relationship to change
 - entirely different instrument, maintenance, fiber optic change, source replacement, etc.
- Last two items are often handled with instrument standarization (aka calibration transfer)

Before Model Goes Online

- Develop a plan for maintenance
 - Assume that updated or new calibration models will eventually be required
 - Have a plan for how to detect the problem and what to do about it
 - Put it in the budget!
- Measure standard samples
 - Plan for registration and amplitude shifts
 - Characterize instrument in ranges important to model

Detecting Model/Data Mismatch & Performance Degradation

- Model prediction diagnostics
 - Spectral residual Q (or similar)
 - Sample distance T² (or similar)
- Prediction accuracy monitored via primary reference method
 - Unlikely that change not detected by diagnostics but possible
 - Risk based approach?
- Detecting that *something* has gone wrong easier than determining *what* has gone wrong.

Standardization Methods

- Many methods available to estimate the response of the standard instrument from a different or changed instrument
- My favorites
 - Direct Standardization (DS)
 - Piecewise Direct Standardization (PDS)
 - and double window PDS (DWPDS)
 - Spectral Subspace Transform (SST)
 - Generalized Least Squares Preprocessing (GLS)
 - Orthogonal Signal Correction (OSC)

Standardization Methods

Metho d	Number of meta- parameters	Y values <i>not</i> required ?	Use original calibration model?	Spectra un- modified ?	Transfer sets <i>not</i> function of Y?	Retains net analyte signal?	Can use generic standards ?	Number transfer samples required
DS	1							High
PDS	2				X			Low
SST	1				X			Medium
GLS	1		X	×		X		Medium
OSC	2-3	×	×	X	X	×	X	Medium

Use original calibration model with transformed slave data

Data Preprocessing

- Preprocessing is done to reduce extraneous variance so that relevant variance can be more easily modeled
- Data preprocessing is a part of most calibration and classification models
- Preprocessing often consists of multiple steps
 - E.g. MSC, followed by 1st derivative, followed by mean centering

Where to place Standardization Transform?

- Standardization transforms are most often done on raw data
- But why not after preprocessing or even between steps?
- May be advantages to standardization after preprocessing
 - Preprocessing designed to reduce unwanted variability
 - Preprocessing my also help in the identification and application of standardization transforms

Model Centric Calibration Transfer (MCCT)

- Calculate standardization transforms between steps in existing calibration models
- Evaluate performance of transfer on calibration and validation sets on a variety of metrics (spectral difference, y-prediction error, etc.)
- Inserts standardization into existing model for use on slave instruments

MCCT Interface

Data/Model Elements:

- Master transfer X
- Slave transfer X
- Calibration common Y
- Master model
- Master validation X
- Slave validation X
- Validation common Y
- Standardization Methods
 Insertion Points
- Method Parameters
- Validation Results
- Calculated Slave Model

EIGENVECTOR RESEARCH INCORPORATED

Example: Corn Data

Starch Model Predictions

MCCT Results for Corn Starch

- Table ordered by prediction error on validation set
- Best transfers are SST inserted between prepro steps

Predictions from Standardized Model

Example: NIR of Pseudo-gasolines

Data provided by AMOCO

Heptane Calibration Model Predicitions

Testing Standardization Methods

Calibratio	n Transfer Model	Types			Calibration Transfer Model Settings					
Direct Standardization (DS) Prepo Insert							Ν	/lin S	Step	Max
Piece	ewise Direct Stan	dardization (PDS	Window (PDS):		1	2	11			
	hla Window Diago	nuice Direct Stop	Window 1 (DWP		1	2	5			
Ubu Dou		ewise Direct Stari	Window 2 (DWP		5	8	29			
 Spe 	ctral Space Trans	formation (SST)	Ncomp (SST): 1 1 5				5			
	PP Trans	Val Diff Data	RMSE(CalS,CalY)	RMSE(ValS,ValM)	RMSE(ValS,ValY)	PDS_WIN	DWPDS_W	.DWPDS_W	SST_NC	D X Prepro
1	0 pds	0.0308	0.7266	1.0460	1.1016	3				caltransf
2	0 pds	0.0347	0.7750	1.2039	1.2562	1				caltransf
3	0 dwpds	0.0356	0.6462	1.2105	1.2623		1	5		caltransf
4	0 pds	0.0271	1.0345	1.2920	1.2724	11				caltransf
5	0 dwpds	0.0331	0.9337	1.4011	1.4192		5	5		caltransf
6	0 pds	0.0300	0.7517	1.4426	1.4429	5				caltransf
7	0 dwpds	0.0444	1.0342	1.5898	1.6424		1	13		caltransf
8	0 dwpds	0.0336	0.9356	1.7264	1.7166		3	5		caltransf
9	0 pds	0.0278	1.2534	1.7456	1.7500	9				caltransf
10	0 dwpds	0.0412	1.1703	1.7544	1.7704		5	21		caltransf
11	0 dwpds	0.0506	1.5400	1.7014	1.7880		1	21		caltransf
12	0 dwpds	0.0386	1.2121	1.7834	1.7957		5	13		caltransf
13	0 pds	0.0287	1.2813	1.8972	1.8931	7				caltransf
14	0 dwpds	0.0417	1.4759	2.0065	2.0314		3	21		caltransf
15	0 dwpds	0.0402	1.3491	2.1076	2.1174		3	13		caltransf
16	0 sst	6.6223e-15	0.4945	2.6061	2.5836					5 caltransf
17	0 dwpds	0.0433	1.5469	2.5253	2.5965		3	29		caltransf

Heptane Predictions from Standardized Spec2

Using Standardized Models

- Create models with PLS_Toolbox or Solo 8.2
- Standardized models can be used just like normal models to make predictions from slave instruments
- Solo_Predictor stand-alone prediction engine
- Coming soon: standardized models exported as compile-able recipes with Model_Exporter

Conclusions

- Standardization an important aspect of model maintenance
- In some instances standardization transforms are best done after or between preprocessing steps
- MCCT is a platform for constructing/testing transforms and insertion points
- Creates easily implementable standardized models
- See: http://tinyurl.com/MCCT-Tool

