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Definitions
• Single-block: data that is logically contained in a 

single matrix
• Two-block: two single block data sets that share a 

common mode (typically the sample mode)
• Multi-block: multiple single blocks that share a 

common mode
• Multi-set: groups of related samples that have the 

same variables, typically from designed experiments
• Multi-level: same as multi-set except typically from 

nested or happenstance designs
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Definitions (cont.)
• Multi-way: Data that is logically arranged in 3-

way (or more) arrays
• Data fusion: the process of combining multiple 

sources of data to improve accuracy 
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• Groups (sets) of related 
samples which have the 
same variables.

Multi-set Data
variables

sa
m

pl
es

• Differences between groups may hide variability 
inherent to all samples.

• For samples grouped according to a DoE can 
separate variability
• Due to each factor
• Remaining systematic variability 

• This is the purpose of ASCA and MLSCA
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• Nested designs: samples 
belong to groups which 
are organized 
hierarchically.

Crossed and nested designs
• Crossed (factorial) designs: 

One or more factors with 
samples measured for every 
combination of factor 
levels.

SCHOOLS
1             2            3            4

STUDENTS

1   2    3  4   5    6   7   8    9  10  11  12

These are both 2-factor designs



For multivariate datasets based on crossed experimental 
designs, ASCA applies ANOVA decomposition and 
dimension reduction (PCA) to :
• Separate the variability associated with each factor.
• Estimate contribution of each factor to total variance.
• Test main factor and interaction effects for significance.
• View scores and loadings for these effects.

Especially useful for high-dimension datasets where 
traditional ANOVA is not possible.
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ASCA
ANOVA Simultaneous Component Analysis



ASCA Method
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• X data matrix, with 2 factors A and B.
• Decompose into DOE components

• Build PCA model for each main effect and interaction

• Calculate permutation P-value to estimate each 
factor’s significance.

• Project residuals onto each PCA sub-model.

X = Xavg + XA + XB + XAB + E

X = Xavg + TAPA
T + TBPB

T + TABPAB
T



ASCA Demo data: asca_data
X: Measured glucosinolate levels in cabbage plants,
3 treatments, Control, Root, Shoot.
4 time points, Days 1, 3, 7, and 14.
5 replicates for each time-treatment.
11 measured concentrations.

X: (60, 11)
F: (60, 2) design matrix.
See X.description for details.
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5 replicates each



ASCA Model
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Time Model Scores and 
Loadings
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ASCA Scores Plot
”Time” factor sub-model, PC 1
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PC 1 of Time dependency common to all Treatments.
Class = Treatment. Connect Classes = Mean at each X



Treatment Model Scores and 
Loadings
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Treatment Scores on PC 1
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ASCA Treatment Scores Plot
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Separating out the Time  and Time x Treatment effects 
highlights the Treatment effect
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PCA Scores Plot

…better than is seen by simply applying PCA to the data.



ASCA Conclusions
• ASCA allows the variation associated with each 

factor to be resolved, and to see the main variables 
involved. 

• For a perturbed biological system 
• Time factor scores reveal the common response 

independent of Treatment
• Treatment factor scores show the Treatment effect 

independent of Time 
• Time x Treatment interaction scores show the additional 

time dependency at each Treatment level.
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ASCA Conclusions, cont.
• The % contribution of each factor or interaction to 

the total SSQ shows which effects are important.
• Perturbation P-values for each factor estimates the 

probability that there is no difference between the 
factor level averages for this effect. 
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MLSCA is a special case of ASCA applied to data from 
designed experiments with nested factors. 
• Separates variability associated with each factor and residual.
• Estimate contribution of each factor to total sum of squares.
• View scores and loadings for these effects.
• Also builds PCA model on the residuals, or “within” 

variability. “Within” is often the focus of the analysis. 
• Note that “Class Center” pre-processing can achieve same 

result if there is a single nesting factor.
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MLSCA
Multi-level Simultaneous Component Analysis



MLSCA Method
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• X data matrix, with 2 nested factors A and B.
• Decompose into DOE components

• Build PCA model for each effect and residual

X = Xavg + XA + XB(A) + E
XA contains factor A level averages
XB(A) contains factor B level averages for each level A
E are the residuals, “within” component

X = Xavg + TAPA
T + TB(A) PB(A)

T + TEPE
T

constant  between A     between B         within



MLSCA: simple example
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MLSCA can be used to reveal 
systematic variability within 
grouped samples which can be 
obscured by inter-group 
differences.

Example:   X: (400,2)
400 samples from 3 individuals, 
A, B, and C.    

Need to remove offsets for each 
individual to see the internal, 
“within” individual variation.
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“BETWEEN”
Individual 
averages

“WITHIN”
Individual
deviations

X =  average for each individual
+ deviations from that
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Example: Plasma Metal Etch

• Linewidth (Critical Dimension) Control
• Constant linewidth reduction run to run and across wafer
• Constant linewidth reduction for every material in stack

• Minimal damage to oxide

Silicon

Oxides
500Å Ti

1000Å TiN

6000Å AlCu (.5%)

500Å TiN

Resist Resist

Silicon

Oxides
Ti

TiN

AlCu

TiN

Resist Resist

TiN

CD

TiN

Ti
Etch in  

Cl2/BCl3
Plasma
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Available Measurements
• Machine State Data: Equipment has SECS-II Port

• Provides traces with time stamp and step number
• Regulatory controller setpoints & controlled variable measured 

values
• gas flows, pressure, plasma powers

• Regulatory controller manipulated variables
• exhaust throttle valve, capacitors
• mass flow controller do not provide valve position

• Additional process measurements
• broadband plasma emission (often used for endpoint)
• impedance measurements 

• Optical Emission Spectroscopy (OES)
• RF Data



Nested dataset “mlsca_data”
12 engineering variables from a LAM 9600 Metal 
Etcher over the course of etching 107 wafers.
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EXPERIMENT
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• Three experiments were 
run at different times.

• Experiment have 34, 36 
and 37 wafers each, for 
107 unique wafers. 

• 80 samples (replicates) 
measured for each 
wafer during etching. 

• X is (8560, 12)
Nested factors are not crossed.



MLSCA Model

28

• MLSCA located under “Design of Experiments” in browse



MLSCA Scores Plot
”Experiment” factor sub-model, PC 1 vs 2
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MLSCA Loadings Plot
”Experiment” factor sub-model, PC 1 and 2



MLSCA Scores Plot
”Within” sub-model, PC 1 vs 2, colored by time
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Within Scores on PC 1
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Compare to PCA
Convolves between and within factors
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MLSCA Loadings Plot
”Within” Residual sub-model, PC 1 and 2



MLSCA Conclusions
MLSCA allows the variation associated with each 
nested factor to be resolved, and to see the main 
variables involved. 
• Often used to reveal the inherent “within” group 

variability of samples after factor effects are 
removed. For process data this allows separation of 
within-run variation from between-run variation.

• SSQ contributions show which nested factors are 
important.
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Multi-block Data Fusion
• Data fusion can be done at three levels

• Low level: single model of combined data blocks 
appropriately scaled/preprocessed

• Mid level: combining scores from individual data 
blocks into a consensus model

• High level: combining predictions from individual 
models in some sort of voting scheme
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Sensitivity of MSPC Models
• Three experiments performed with 21 “induced” faults on:

• TCP top power
• RF bottom power
• Cl2 flow
• BCl3 flow
• Chamber pressure
• Helium chuck pressure

• Data available for Machine State, RF and OES
• Goal: Compare ability of models considered for detecting 

faults: best case and for routine data
• Generated realistic faults to test models



Example with Etch Data
• Available data: Machine, OES and RFM data for 

104 normal wafers and 20 induced faults
• Data reduced just to mean over each batch
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Multi-block Tool Interface
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Drag calibration data sets here

Drag test data sets here



Separately Preprocessed Then
Joined Data
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Or put models here for
mid level fusion



Data pushed into PCA
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With Test Data Loaded
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Redo at Mid-level
• Develop individual PCA models of data blocks
• Load models into Multi-block tool
• Choose model outputs
• Join and push into PCA
• Results similar

42



Conclusions I
• ASCA 

• for multi-set data typically from designed experiments
• MLASCA 

• for multi-level data typically from happenstance data 
(often semi-batch)

• ASCA and MLASCA allow new ways to partition 
and understand variance
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Conclusions II
• Data Fusion methods combine multi-block data 

that share a common mode
• Data Fusion can be done at three levels

• Low Level: joining blocks after preprocessing
• Mid Level: joining model outputs such as scores
• High Level: Combine predictions from multiple models 

in some sort of voting scheme
• Often brings out aspects of data that aren’t 

obvious in blocks analyzed separately 
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