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Definitions

Single-block: data that 1s logically contained in a
single matrix

Two-block: two single block data sets that share a
common mode (typically the sample mode)

Multi-block: multiple single blocks that share a
common mode

Multi-set: groups of related samples that have the
same variables, typically from designed experiments

Multi-level: same as multi-set except typically from
nested or happenstance designs
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Definitions (cont.)

e Multi-way: Data that 1s logically arranged in 3-
way (or more) arrays

e Data fusion: the process of combining multiple
sources of data to improve accuracy
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Multi-set Data

variables

e Groups (sets) of related
samples which have the
same variables.

«—— samples

* Differences between groups may hide variability
inherent to all samples.

* For samples grouped according to a DoE can
separate variability
* Due to each factor
* Remaining systematic variability
* This 1s the purpose of ASCA and MLSCA
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Crossed and nested designs

e Crossed (factorial) designs:
One or more factors with
samples measured for every
combination of factor
levels.

* Nested designs: samples
belong to groups which
are organized
hierarchically.

These are both 2-factor designs

Treatment

A B C D

Dose

1.1

2.0

3.5

S

A A/

12 345 67 8 91011 12
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ASCA

ANOVA Simultaneous Component Analysis

For multivariate datasets based on crossed experimental
designs, ASCA applies ANOVA decomposition and
dimension reduction (PCA) to :

e Separate the variability associated with each factor.

e Estimate contribution of each factor to total variance.

e Test main factor and interaction effects for significance.
e View scores and loadings for these effects.

Especially useful for high-dimension datasets where
traditional ANOVA i1s not possible.
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ASCA Method

X data matrix, with 2 factors A and B.
Decompose into DOE components

X=X+ Xpa+Xg+Xp+E

Build PCA model for each main effect and interaction
X —_ Xavg + TAPAT + TBPBT + TABPABT

Calculate permutation P-value to estimate each
factor’s significance.

Project residuals onto each PCA sub-model.
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ASCA Demo data: asca data

X: Measured glucosinolate levels in cabbage plants,
3 treatments, Control, Root, Shoot.
4 time points, Days 1, 3,7, and 14.

S5 replicates for each time-treatment.

11 measured concentrations.

Time (Day)
1 3 7 14

X: (60, 11)
F: (60, 2) design matrix.

See X.description for details.

S replicates each

Treatment
=
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ASCA Model
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[ 3. Choose Preprocessing l

4. Perform Analysis

View: e 1D ASCA Settings
Number PCs: ‘ RS
Auto Select
A A
Term PCs Cum Eigen Val Q Effect ) ( P-valuQ

1 Time 3 1.52 13.80 0.0010

2 Treatment 2 2.54 2310 0.0010

3 (Time) x (Trea... 6 149 13.58 0.0010

4 Mean - - 0.00 -

5 Residuals - - 49,52 -

=
[1 of 1] Note: The x-block appears to be -
mean centered. This is OK but will cause the "mean” in the effects table to be —
zero.
—— ————— ——

‘ g Cache Settings and Vi
-9 Demo Data
Il Alcoholics Biologi
----- ﬁ Aminocacid Fluore
g Archeology XRF (4
1l Aspirin and Polyel
-1 Aspirin and Polye
----- ﬁ Avicel Drug Bead |
1l Biscuit Dough NIF
ﬁ Brain Scan (MRI 2!
1l Brain Weight and
----- ﬁ Bread 3-Way Sens
i ﬁ Cervical Cancer El
ﬁ Dorrit 4-compone
ﬁ Dupont Batch Stai
----- ﬁ FIA of Hydroxy-Be
ﬁ FTIR Microscopy ¢
ﬁ Fluorescence EEM
ﬁ GCMS Data of Rec
----- ﬁ Glucosinolate Lev
ﬁ Hald Portland Cer
ﬁ Indian Pines Land
1§l LCMS of Surfactar
----- & LCMS of Surfactar
-l LCMS of Surfactar ~
<« [.m »

s~ EIGENVECTOR

LILJ RESEARCH INCORPORATED



Time Model Scores and
Loadings
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ASCA Scores Plot

”Time” factor sub-model, PC 1
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PC 1 of Time dependency common to all Treatments.
Class = Treatment. Connect Classes = Mean at each X
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Treatment Scores on PC 2
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Treatment Model Scores and
Loadings

Control
Root
Shoot

-1 0 1
Treatment Scores on PC 1

Treatment Loadings on PC 2

0.7

0.6

0.5

0.4

0.3

0.2

0.1

-0.1

-0.2

T T T T T T T T T T T

[ © GBN

L I J
I
I

L | J

o GNA | o PRO

L | 4
I

i | i
[ © GNL
I

L | J
|
| o ALY
I

| ___oeRmaH I _esoM _ _ _ _ ______ _|

o NAS [

I

- © 4MeOH .
: © GBC

1 1 1 | 1 1 1 1 OLNEQO 1 1
-0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Treatment Loadings on PC 1

s~ EIGENVECTOR

L&A RESEARCH INCORPORATED



15

ASCA Treatment Scores Plot

Treatment Scores on PC 2

Treatment Scores on PC 1

Separating out the Time and Time x Treatment effects
highlights the Treatment effect
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PCA Scores Plot

- N w B [¢)] »
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Scores on PC 2 (20.58%)

1 1 1 1
, ~ w N -
T T T

Scores on PC 1 (38.50%)

...better than 1s seen by simply applying PCA to the data.
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ASCA Conclusions

e ASCA allows the variation associated with each
factor to be resolved, and to see the main variables
involved.

e For a perturbed biological system

e Time factor scores reveal the common response
independent of Treatment

e Treatment factor scores show the Treatment effect
independent of Time

e Time x Treatment interaction scores show the additional
time dependency at each Treatment level.
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ASCA Conclusions, cont.

e The % contribution of each factor or interaction to
the total SSQ shows which effects are important.

e Perturbation P-values for each factor estimates the
probability that there 1s no difference between the
factor level averages for this effect.
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MLSCA

Multi-level Simultaneous Component Analysis

MLSCA is a special case of ASCA applied to data from
designed experiments with nested factors.

Separates variability associated with each factor and residual.
Estimate contribution of each factor to total sum of squares.
View scores and loadings for these effects.

Also builds PCA model on the residuals, or “within”
variability. “Within” 1s often the focus of the analysis.

Note that “Class Center” pre-processing can achieve same
result if there 1s a single nesting factor.
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MLSCA Method

e X data matrix, with 2 nested factors A and B.
* Decompose into DOE components

X — Xavg + XA + XB(A) + E

X, contains factor A level averages

Xp(a) contains factor B level averages for each level A
E are the residuals, “within” component

e Build PCA model for each effect and residual
X — Xavg + TAPAT + TB(A) PB(A)T + TEPET

constant between A  between B within
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MLSCA: simple example

MLSCA can be used to reveal
systematic variability within
grouped samples which can be
obscured by inter-group
differences.

Example: X: (400,2)

400 samples from 3 individuals,

A, B, and C.

Need to remove offsets for each
individual to see the internal,
“within” individual variation.

var2

30
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Example: Plasma Metal Etch

500A TiN
q

1000A TiN Etch in

500A Ti Clo/BCl3
| L Plasma

Silicon Silicon

e Linewidth (Critical Dimension) Control

¢ (Constant linewidth reduction run to run and across wafer

e Constant linewidth reduction for every material in stack
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Available Measurements

 Machine State Data: Equipment has SECS-II Port

* Provides traces with time stamp and step number

e Regulatory controller setpoints & controlled variable measured
values

e gas flows, pressure, plasma powers

e Regulatory controller manipulated variables
» exhaust throttle valve, capacitors

e mass flow controller do not provide valve position

* Additional process measurements
e broadband plasma emission (often used for endpoint)

e impedance measurements

e Optical Emission Spectroscopy (OES)
e RF Data
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Nested datasetl “misca data”

12 engineering variables from a LAM 9600 Metal
Etcher over the course of etching 107 wafers.

* Three experiments were
run at different times.

e Experiment have 34, 36
and 37 wafers each, for
107 unique wafers.

e 80 samples (replicates)
measured for each

wafer during etching.
e Xis (8560, 12)

27

EXPERIMENT
1 2 3

WAFER|1|2 3435|364 °*** |70[7172 107
X[ X X | X| X X | X[ X X

X[ X X | X| X X | X[ X X

80 X[ X X | X| X X | X[ X X
eerir | |- i . i
CATES : : :
X| X X | X| X X | X[ X X

Nested factors are not crossed.
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MLSCA Model

g - _— ——
-Analysis-MLSCA-x,F =N
File Edit Preprocess Analysis Refine Tools Help FigBrowser N
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A L B Cache Settings and \
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=

A model has been calibrated from the data. Review the model using the toolbar -
button(s), save the model (File menu), or load test (validation) data (File menu). The ‘g
numbr of components preprocessnng optlons and other ettngs can also be ' n P e T— -
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MLSCA Scores Plot

“Experiment” factor sub-model, PC 1 vs 2
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MLSCA Loadings Plot

“Experiment” factor sub-model, PC 1 and 2

0.8

T $&
N QQ
Y & <&
RNt
06F <
(bb \AQ)
NN\
Q T\
PR
04

Between Expt Loadings on PC 1, Between Expt Loadings on PC 2

-0.2
I B<tween Expt Loadings on PC 1
I Between Expt Loadings on PC 2
0.4 I I I 1 1
0 2 4 6 8 10 12 14

Variable

s~ EIGENVECTOR

L&A RESEARCH INCORPORATED



31

MLSCA Scores Plot

“Within” sub-model, PC 1 vs 2, colored by time

Within Scores on PC 2
o
[
I
I
I

Within Scores on PC 1
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Scores on PC 2 (18.06%)

Compare to PCA

Convolves between and within factors

80
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450
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-4 30

Scores on P
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1 (23.99%)

s~ EIGENVECTOR

LILJ RESEARCH INCORPORATED



33

MLSCA Loadings Plot

“Within” Residual sub-model, PC 1 and 2

Within Loadings on PC 1, Within Loadings on PC 2
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MLSCA Conclusions

MLSCA allows the variation associated with each
nested factor to be resolved, and to see the main
variables involved.

e Often used to reveal the inherent “within™ group
variability of samples after factor effects are
removed. For process data this allows separation of
within-run variation from between-run variation.

e SSQ contributions show which nested factors are
important.
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Multi-block Data Fusion

e Data fusion can be done at three levels

* Low level: single model of combined data blocks
appropriately scaled/preprocessed

e Mid level: combining scores from individual data
blocks into a consensus model

e High level: combining predictions from individual
models in some sort of voting scheme
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Sensitivity of MSPC Models

Three experiments performed with 21 “induced” faults on:
e TCP top power

RF bottom power
Cl12 flow

BCIl3 flow
Chamber pressure

* Helium chuck pressure
Data available for Machine State, RF and OES

Goal: Compare ability of models considered for detecting
faults: best case and for routine data

Generated realistic faults to test models
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Example with Etch Data

e Available data: Machine, OES and RFM data for
104 normal wafers and 20 induced faults

e Data reduced just to mean over each batch
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Multi-block Tool Interface

® O O Multi-block Tool
File Edit Help FigBrowser

M B B &

Source Data __ Drag calibration data sets here

Model Fields

Join Settings
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o
Q

Join Data Drag test data sets here

/

New Data =~

Apply New Data [
(=]
=}
g
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Separately Preprocessed Then
Joined Data

® O O Multi-block Tool
File Edit Help FigBrowser L]

M B W &

Multiblock Model Joined New Data
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Data pushed into PCA

® O O Analysis - PCA 3 PCs - x1
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With Test Data Loaded

® O O Analysis - PCA 3 PCs - x1
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Scores on PC 2 (11.68%)
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Redo at Mid-level

Develop individual PCA models of data blocks

Load models into Multi-block tool
Choose model outputs
Join and push into PCA

Results similar
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Conclusions |

e ASCA

e for multi-set data typically from designed experiments

 MLASCA

e for multi-level data typically from happenstance data
(often semi-batch)

e ASCA and MLASCA allow new ways to partition
and understand variance
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Conclusions Il

Data Fusion methods combine multi-block data
that share a common mode

Data Fusion can be done at three levels
 Low Level: joining blocks after preprocessing
e Mid Level: joining model outputs such as scores

e High Level: Combine predictions from multiple models
in some sort of voting scheme

Often brings out aspects of data that aren’t
obvious in blocks analyzed separately
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