Alternative Model Forms for Multi-set, Multi-level and Multi-block Data

©Copyright 2016 Eigenvector Research, Inc. No part of this material may be photocopied or reproduced in any form without prior written consent from Eigenvector Research, Inc.

Outline

- Definitions
- Multi-level data
 - DOE, crossed and nested designs
- ASCA
 - ANOVA simultaneous component analysis
 - Example
- MLSCA
 - Multi-level simultaneous component analysis.
 - Example
- Multi-block Data
 - Levels of data fusion
 - Examples

Definitions

- Single-block: data that is logically contained in a single matrix
- Two-block: two single block data sets that share a common mode (typically the sample mode)
- Multi-block: multiple single blocks that share a common mode
- Multi-set: groups of related samples that have the same variables, typically from designed experiments
- Multi-level: same as multi-set except typically from nested or happenstance designs

Definitions (cont.)

- Multi-way: Data that is logically arranged in 3way (or more) arrays
- Data fusion: the process of combining multiple sources of data to improve accuracy

Multi-set Data

• Groups (sets) of related samples which have the same variables.

- Differences between groups may hide variability inherent to all samples.
- For samples grouped according to a DoE can separate variability
 - Due to each factor
 - Remaining systematic variability
- This is the purpose of ASCA and MLSCA

Crossed and nested designs

- Crossed (factorial) designs: One or more factors with samples measured for every combination of factor levels.
- Nested designs: samples belong to groups which are organized hierarchically.

These are both 2-factor designs

		Treatment							
		Α	B	С	D				
	1.1								
OSe	2.0								
	3.5								

ANOVA Simultaneous Component Analysis

For multivariate datasets based on crossed experimental designs, ASCA applies ANOVA decomposition and dimension reduction (PCA) to :

- Separate the variability associated with each factor.
- Estimate contribution of each factor to total variance.
- Test main factor and interaction effects for significance.
- View scores and loadings for these effects.

Especially useful for high-dimension datasets where traditional ANOVA is not possible.

ASCA Method

- X data matrix, with 2 factors A and B.
- Decompose into DOE components

 $\mathbf{X} = \mathbf{X}_{\text{avg}} + \mathbf{X}_{\text{A}} + \mathbf{X}_{\text{B}} + \mathbf{X}_{\text{AB}} + \mathbf{E}$

• Build PCA model for each main effect and interaction

 $\mathbf{X} = \mathbf{X}_{\text{avg}} + \mathbf{T}_{\text{A}}\mathbf{P}_{\text{A}}^{\text{T}} + \mathbf{T}_{\text{B}}\mathbf{P}_{\text{B}}^{\text{T}} + \mathbf{T}_{\text{AB}}\mathbf{P}_{\text{AB}}^{\text{T}}$

- Calculate permutation P-value to estimate each factor's significance.
- Project residuals onto each PCA sub-model.

ASCA Demo data: asca_data

- X: Measured glucosinolate levels in cabbage plants,
- 3 treatments, Control, Root, Shoot.
- 4 time points, Days 1, 3, 7, and 14.
- 5 replicates for each time-treatment.
- 11 measured concentrations.

X: (60, 11) F: (60, 2) design matrix. See X.description for details.

		Time (Day)						
		1	3	7	14			
ent	С							
atme	R	5 r	eplica	tes ea	ch			
Trea	S							

ASCA Model

🚺 Analy	🛃 Analysis - ASCA - Cabbage, Design Factors for Glucosinolates Data									
File Edit Preprocess Analysis Refine Tools Help FigBrowser 🔹 🗙										
×	- 1m + .	Time + Treat	me + (Time) v	Analysis Flowchart	Cache : "general" DATX Cache Settings and Vi					
						1. Load X (Response) data	Demo Data Alcoholics Biologi			
	Resp	onse	P Clutter			2. Load Y (DOE) data	Aminoacid Fluore			
			Mode	el 🛛		3. Choose Preprocessing	Aspirin and Polyet			
	DOE	_	Calibrat	e		4. Perform Analysis	Aspirin and Polyet			
View:	SS	Q Table	ASC	A Settings			📲 🗑 Biscuit Dough NIF			
Number	PCs:	Auto Select					Brain Scan (MRI 2:			
l		Add Conoc					Brand 2-Way Sepr			
				\frown	\frown		Cervical Cancer Ff			
	Term	PCs	Cum Eigen Val	Effect	P-value		Dorrit 4-compone			
1	Time	3	1.52	13.80	0.0010		Dupont Batch Stat			
2	Treatment	2	2.54	23.10	0.0010		FIA of Hydroxy-Be			
3	(Time) x (Trea	6	1.49	13.58	0.0010		FTIR Microscopy (
4	Mean	-	-	0.00	-		- Fluorescence EEM			
5	Residuals	-	-	49.52	-		GCMS Data of Rec			
					Glucosinolate Lev					
					Hald Portland Cer					
					Indian Pines Land					
14 of 42 M	ata: Tha y black and	ages to be	-		LCMS of Surfactar					
mean cen	tered. This is OK bu	t will cause the "r	nean" in the effects		LCMS of Surfactar					
zero.					LCMS of Surfactar					

Time Model Scores and Loadings

ASCA Scores Plot

"Time" factor sub-model, PC 1

PC 1 of Time dependency common to all Treatments. Class = Treatment. Connect Classes = Mean at each X

Treatment Model Scores and Loadings

ASCA Treatment Scores Plot

Separating out the Time and Time x Treatment effects highlights the Treatment effect

PCA Scores Plot

... better than is seen by simply applying PCA to the data.

ASCA Conclusions

- ASCA allows the variation associated with each factor to be resolved, and to see the main variables involved.
- For a perturbed biological system
 - Time factor scores reveal the common response independent of Treatment
 - Treatment factor scores show the Treatment effect independent of Time
 - Time x Treatment interaction scores show the additional time dependency at each Treatment level.

ASCA Conclusions, cont.

- The % contribution of each factor or interaction to the total SSQ shows which effects are important.
- Perturbation P-values for each factor estimates the probability that there is no difference between the factor level averages for this effect.

MLSCA

Multi-level Simultaneous Component Analysis

MLSCA is a special case of ASCA applied to data from designed experiments with nested factors.

- Separates variability associated with each factor and residual.
- Estimate contribution of each factor to total sum of squares.
- View scores and loadings for these effects.
- Also builds PCA model on the residuals, or "within" variability. "Within" is often the focus of the analysis.
- Note that "Class Center" pre-processing can achieve same result if there is a single nesting factor.

MLSCA Method

- X data matrix, with 2 nested factors A and B.
- Decompose into DOE components

 $\mathbf{X} = \mathbf{X}_{\text{avg}} + \mathbf{X}_{\text{A}} + \mathbf{X}_{\text{B}(\text{A})} + \mathbf{E}$ \mathbf{X}_{A} contains factor A level averages $X_{B(A)}$ contains factor B level averages for each level A E are the residuals, "within" component

• Build PCA model for each effect and residual $\mathbf{X} = \mathbf{X}_{avg} + \mathbf{T}_{A}\mathbf{P}_{A}^{T} + \mathbf{T}_{B(A)}\mathbf{P}_{B(A)}^{T} + \mathbf{T}_{E}\mathbf{P}_{E}^{T}$

constant between A between B within

MLSCA: simple example

MLSCA can be used to reveal systematic variability within grouped samples which can be obscured by inter-group differences.

Example: X: (400,2) 400 samples from 3 individuals, A, B, and C.

Need to remove offsets for each individual to see the internal, "within" individual variation.

X = average for each individual + deviations from that

Example: Plasma Metal Etch

- Linewidth (Critical Dimension) Control
 - Constant linewidth reduction run to run and across wafer
 - Constant linewidth reduction for every material in stack
- Minimal damage to oxide

Available Measurements

- Machine State Data: Equipment has SECS-II Port
 - Provides traces with time stamp and step number
 - Regulatory controller setpoints & controlled variable measured values
 - gas flows, pressure, plasma powers
 - Regulatory controller manipulated variables
 - exhaust throttle valve, capacitors
 - mass flow controller do not provide valve position
 - Additional process measurements
 - broadband plasma emission (often used for endpoint)
 - impedance measurements
- Optical Emission Spectroscopy (OES)
- RF Data

Nested dataset "mlsca_data"

12 engineering variables from a LAM 9600 Metal Etcher over the course of etching 107 wafers.

- Three experiments were run at different times.
- Experiment have 34, 36 and 37 wafers each, for 107 unique wafers.
- 80 samples (replicates) measured for each wafer during etching.
- X is (8560, 12)

		EXPERIMENT										
	1			2			3					
WAFER	1	2	•••	34	35	36	•••	70	71	72	•••	107
80 REPLI- CATES	X X X · ·	X X X ·		X X X ·	X X X	X X X ·		X X X ·	X X X	X X X ·		X X X ·

Nested factors are not crossed.

MLSCA Model

MLSCA Scores Plot

"Experiment" factor sub-model, PC 1 vs 2

MLSCA Loadings Plot "Experiment" factor sub-model, PC 1 and 2

MLSCA Scores Plot

"Within" sub-model, PC 1 vs 2, colored by time

Compare to PCA

Convolves between and within factors

MLSCA Loadings Plot "Within" Residual sub-model, PC 1 and 2

MLSCA Conclusions

MLSCA allows the variation associated with each nested factor to be resolved, and to see the main variables involved.

- Often used to reveal the inherent "within" group variability of samples after factor effects are removed. For process data this allows separation of within-run variation from between-run variation.
- SSQ contributions show which nested factors are important.

Multi-block Data Fusion

- Data fusion can be done at three levels
 - Low level: single model of combined data blocks appropriately scaled/preprocessed
 - Mid level: combining scores from individual data blocks into a consensus model
 - High level: combining predictions from individual models in some sort of voting scheme

Sensitivity of MSPC Models

- Three experiments performed with 21 "induced" faults on:
 - TCP top power
 - RF bottom power
 - Cl2 flow
 - BCl3 flow
 - Chamber pressure
 - Helium chuck pressure
- Data available for Machine State, RF and OES
- Goal: Compare ability of models considered for detecting faults: best case and for routine data
- Generated realistic faults to test models

Example with Etch Data

- Available data: Machine, OES and RFM data for 104 normal wafers and 20 induced faults
- Data reduced just to mean over each batch

Multi-block Tool Interface

O O Multi-block Tool File Edit Help EigBrowser	
Multiblock Model Joined Data Joined New Data	
Source Data	Drag calibration data sets here
Source Models	
Model Fields	
sou	
Preprocessing	
Join Join Join Join Join Join Join Join	
Join Data	Drag test data sets here
New Data	
ata	
D S Z Join Data	
Apply	
	RESEARCH INCORPORATED

Separately Preprocessed Then Joined Data

Θ Θ	Multi-block Tool		
File Edit Help FigBro	wser	ъ –	
🕅 🖓 📥			
Multiblock Model	Joined Data Joined New Data		
😑 🖃 Source Data			\mathbf{O} (111 C
x1 104x22	Unnamed 104x129 Unnamed 104x71		Or put models here for mid level fusion
Source Models			
Model Fields			
s			
ອ Preprocessing			
Autoscale Block Variance S	Mean Center Autoscale Block Variance S Block Variance S		
🖃 Join D <mark>ata</mark>			
Joined Data 104x22 Join	Joined Data 104x151 Join 104x222		
🗆 🖻 New Data	ľ		
at 20x22	Unnamed 20x129 20x71		
Z 🖃 Join Data			
Joined Data 20x22 Label	Joined Data 20x151 Join 20x222		EIGENVECTO RESEARCH INCORPORAT

Data pushed into PCA

With Test Data Loaded

Redo at Mid-level

- Develop individual PCA models of data blocks
- Load models into Multi-block tool
- Choose model outputs
- Join and push into PCA
- Results similar

Conclusions I

- ASCA
 - for multi-set data typically from designed experiments
- MLASCA
 - for multi-level data typically from happenstance data (often semi-batch)
- ASCA and MLASCA allow new ways to partition and understand variance

Conclusions II

- Data Fusion methods combine multi-block data that share a common mode
- Data Fusion can be done at three levels
 - Low Level: joining blocks after preprocessing
 - Mid Level: joining model outputs such as scores
 - High Level: Combine predictions from multiple models in some sort of voting scheme
- Often brings out aspects of data that aren't obvious in blocks analyzed separately

References

ASCA:

- Smilde, A.K., J.J. Jansen, H.C.J. Hoefsloot, R-J.A.N. Lamars, J. van der Greef, M.E. Timmerman, "ANOVA-simultaneous component analysis (ASCA): a new tool for analyzing designed metabolomics data", Bioinformatics, 2005, 21, 3043-3048.
- Zwanenburg, G., H.C.J. Hoefsloot, J.A. Westerhuis, J.J. Jansen, and A.K. Smilde, "ANOVA-principal component analysis and ANOVA-simultaneous component analysis: a comparison". J. Chemometrics, 2011.

MLSCA:

- de Noord, O.E., and E.H. Theobald, Multilevel component analysis and multilevel PLS of chemical process data. J. Chemometrics 2005; 301–307
- Timmerman, M.E., Multilevel Component Analysis. Brit. J. Mathemat. Statist. Psychol. 2006, 59, 301-320.
- Jansen, J.J., H.C.J. Hoefsloot, J. van der Greef, M.E. Timmerman and A.K. Smilde, Multilevel component analysis of time-resolved metabolic fingerprinting data. Analytica Chimica Acta, 530, (2005), 173–183.

