Visualization of Two-way, Three-way and Higher Order Data Sets

Barry M. Wise **EIGENVECTOR RESEARCH, INC.**

Data Order

- Data Order defined by the number of dimensions in which it is logically arranged
- Two-way: conventional data tables
 - Samples by variables
- Three-way: data cubes
 - EEM: Samples by excitation by emission
 - GC-MS: *Samples* by *retention* by *mass number*
 - Hyperspectral: *x* by *y* by *spectra*
- Four-way: series of data cubes
 - SIMS depth profiling: *x* by *y* by *z* by *spectra*
- Five-way: array of data cubes
 - EEM images: *sample* by *x* by *y* by *excitation* by *emission*

Etc.

Continued Refinement

PCA Scores of Arch Data

Issues With Larger Data Sets

Colorby Layered

Colorby Unsorted

EIGENVECTOR RESEARCH INCORPORATED

Translucent Data Points? Size?

And There Are Limits

Visualizing Raw Data

Visualizing Preprocessing

Secondary Ion Mass Spectrometry (SIMS)

The primary ion source is moved over the sample surface in a pseudo-random pattern to obtain a hyperspectral image.

Sputtering \rightarrow Depth Profiling Sputter Ion Sputtering "peels off" a layer Beam, C_{60}^{2+} exposing a new surface for hyperspectral imaging. Remove a Layer Layered Sample

ToF-SIMS Imaging & Depth Profiling

- The primary beam is scanned over the surface
 mass channel spectrum (time of flight) at each pixel
 - 256x256 hyperspectral image of the surface
- Depth profiling is achieved by sputtering
 multiple hyperspectral images at 50 different depths (~200 nm depth profile)
- 256x256x406⁺x50 reduced to 85x85x300x50
 use mean of 3x3 windows, remove edge pixels, remove highest mass channels

 $^{\scriptscriptstyle +}406$ peaks were selected and integrated across all mass spectr

Data Analysis

- Principal Components Analysis (PCA)
 - orthogonal scores / loadings
- Multivariate Curve Resolution (MCR)
 - attempt to obtain pure component, non-negative scores and factors that are more physically interpretable
- Use Poisson scaling
 - allows lower signal (higher mass channels) to influence the model
- Parallel Factor Analysis (PARAFAC)

Example Image

PCA Results Tiled Scores

Image of Scores on PC 2 (16.81%)

Linking

Visualizing 3-D Volume

As recovered

Preprocessing undone

Another take: PARAFAC

- Unfold 4-way data array in pixel (x-y) modes
 - 7225 pixels by 300 mass channels by 50 layers
- Use Parallel Factor Analysis to model data as outer product of the three modes
- Fold pixel mode back up to make images
- Used non-negativity constraint

PARAFAC Model

88.1% Variance Captured!

22

21

20

19

18

17

16

15

14

13

12

Loadings First PARAFAC Component

Loadings Second PARAFAC Component

PARAFAC Loadings for Depth Mode 0.5 0.45 0.4 **bakafac** Loadings 0.3 0.2 0.2 0.2 0.1 0.05 0 20 30 10 15 25 35 40 5 45 50 Depth into Sample

Loadings Third PARAFAC Component

Pixel Factors Correlated!

- Variations in signal strength at each pixel persist as depth is profiled
- Seems to be 5 discrete signal strength levels
- Sampling problem??

MATLAB® PLS_Toolbox MIA_Toolbox

Conclusions

- Many ways to look at data!
- "Color-by" especially useful on raw data or for adding info to other plots
- Factor based methods (PCA, MCR, PARAFAC, etc.) can condense data down to lower dimensions while retaining info
- Slicing and adding motion can reveal things previously un-noticed

