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Introduction: Data are often fit to a curve such as a 
low order polynomial or other basis function. 
However, at times the fitting functions are too 
restrictive and don’t provide a good representation of 
the original data. A more flexible approach was 
developed by Eilers[1] and is further modified to 
provide additional flexibility as demonstrated by the 
wsmooth function in PLS_Toolbox and Solo.[2] 
 
The Whittaker Smoother: Eiler’s paper[1] introduces 
the following objective function 
 

   O z( ) = y − z( )T
W0 y − z( ) + λsz

TDs
TDsz  

 
where  y  is a   N ×1  vector of measured data,  z  is 

smooth curve to be fit to the data,   W0  is a diagonal 

matrix of weights (typically   
0 ≤ w0,n ≤1  for 

  n = 1,..., N ,   Ds  is a second derivative operator (e.g., 

  Dsz  is the second derivative of  z ) and  λs  is a scalar 
penalty on the smoothing term. When data are 
missing, the corresponding weight,   

w0,n , can be set to 

zero. Once that   W0  and  λs  are given (set by default 
or provided by the user) the corresponding estimate of 
 z  is given by 
 

  
ẑ = W0 + λsDs

TDs( )−1
W0y . 

 
For example, an optical emission (OES) spectrum is 
plotted Figure 1 along with two smoothed versions 
shown for   W0 = I  and  λs = 0.1  (low smoothing) 

and  λs = 10  (stronger smoothing). The optical 
emission spectra are available at 
www.eigenvector.com and discussed in References 
[3,4]. The stronger smoothing (green curve) appears to 
suppress the noise better than the weak smoothing but 
it also suppresses the peaks more. With a slight 
modification to the objective function, the best of both 
worlds can be obtained. 
 

The Modified Whittaker Smoother: The original 
smoother can be modified to allow for different 
smoothness weighting on each of the channels using 
 

   O z( ) = y − z( )T
W0 y − z( ) + λsz

TDs
TWsDsz  

 
where   Ws  is a diagonal matrix of weights with entries 

  
0 ≤ ws,n ≤1  and corresponding estimator given by 

 

  
ẑ = W0 + λsDs

TWsDs( )−1
W0y . 

 
For the example, lowering the weights in   Ws  from 1 
to 0.1 for the wavelengths (λ ) with peaks 
corresponding to 258< λ <280, 307<λ <311 and 393<
λ <397, the smoother gives the final smoothed 
spectrum in Figure 2 (the black curve). The smooth 
black curve follows the green curve outside the peak 
ranges and the red curve with the peak ranges. 
 

 
Figure 1: Uncorrected OES spectrum (blue), smoothed 
spectrum  λs = 0.1  (red) and strongly smoothed spectrum 

 λs = 10  (green). Zoom in on a small peak (middle) and 

significant sharp peaks (bottom).  
 
A primary objective of smoothing, and preprocessing 
in general, is to increase the signal-to-noise (or more 
precisely signal-to-clutter). The eigenvalue 
distribution from PCA for a set of 46 OES spectra is 
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shown in Figure 3 for the original data and the three 
different smoothing approaches. The eigenvalue 
distribution for principal components (PCs) ≥6 are 
mostly attributable to noise. A proxy for S/N is the 
ratio of the sum of the eigenvalues 1 to 5 to the sum of 
eigenvalues ≥6 shown in the figure. The original 
spectra and the low smoothing appear to have the 
lowest S/N while the higher smoothing has the biggest 
S/N. Interestingly, relaxing the smoothing on the 
peaks appears to lower the S/N slightly compared to 
including smoothing over all the wavelengths. 
 

 
Figure 2: Uncorrected OES spectrum (blue), smoothed 
spectrum  λs = 0.1  (red) and strongly smoothed spectrum 

 λs = 10  (green). Strong smoothing except for the peaks (black) 

Zoom in on a small peak (middle) and significant sharp peaks 
(bottom). 
 
Conclusions: Smoothing is a useful tool for providing 
interpretable trends given by the smoothed signal and 
has the potential to improve signal-to-noise. 
 

 
Figure 3: Eigenvalue distributions for the original signal and 
three versions of the smoothed signal for a set of 46 OES 
spectra. 
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