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Introduction: The datafit_engine function in 
PLS_Toolbox[1] is a flexible tool for fitting smooth 
curves to data[2-5]. Imposing constraints by fitting to 
basis functions allows more control over the fit. For 
example, in the previous white paper the baselines fit to 
the OES spectra were very flexible and strongly non-
linear with respect to wavelength.[5] This white paper 
starts with the results from that flexible fit and shows 
how the datafit_engine function can be used to 
baseline spectra using an asymmetric least-squares 
algorithm with basis functions via penalty functions. As 
with the previous example, the baseline is a smooth 
curve but less flexible in selected regions of the OES 
spectra. 
 
DATAFIT_Engine Objective: The objective function 
used by datafit_engine has been presented 
previously[3-5] and, in the interest of brevity, it is left 
to the reader to review that material. 
 
For a vector of measured data, , the corresponding 
smooth curve fit to the data is . The outputs from 
datafit_engine include z, the smoothed estimate, 
and yb = y – z, the difference between the measured 
signal and the smoothed signal. The strength of the 
smoothing if given by a scalar penalty, , and the 
diagonal elements of Ws (with elements between 0 and 
1) can be used to relax smoothing in selected regions of 
a spectrum. Similarly, the strength of the fit to a set of 
basis functions is given by the scalar penalty, lb. The 
diagonal elements of Wb (with elements between 0 and 
1) can be used to relax fitting in selected regions of a 
spectrum. See [4] for a more complete description. The 
example shown below can be reproduced in 
PLS_Toolbox: run datafit_engine demo with 
option 5. 
 
Baseline Estimation with DATAFIT_Engine: As in 
[4], the example here uses two calls to 
datafit_engine. The first call is used to fit a smooth 
curve to the bottom of a set of the OES spectra – this is 
output z and is an estimate of a spectral baselines. The 
penalties and weights are input using an options 
structure and for the example in [4] an asymmetric 
least-squares fit was obtained by setting trbflag to fit to 
the bottom of the spectrum (options.trbflag = 

‘bottom’), setting the tolerance to 4 (options.tol 
= 4) and setting the smoothing penalty ls to 105. 
(options.lambdas = 1e5). Figure 1 shows the 
estimated baseline spectra, z). The region 245 to 300 
nm shows significant non-linearity that might not be 
desired. New options will be included to minimize the 
flexibility in this region. 
 
To reduce the non-linear behavior in the 245 to 300 nm 
region, the following changes are made to options. To 
fit an offset, the polynomial order is set to 0 
(options.orderp = 0) and the fitting penalty lb is 
set to 102 (options.lambdab = 1e2). The weights 
(diagonal elements of Wb) are set to a smoothly varying 
function given by[1]  

[options.wb = (1+ peaksigmoid([1 270 -
0.2], oes1.axisscale{2}))/2] 

Figure 2 shows the resulting baseline fits, z, using 
asymmetric least-squares with fitting to a basis function 
(0th order polynomial). The baselines in the 245 to 300 
nm region have been ‘flattened’ while the region > 300 
nm, where the elements of Wb are very small or zero is 
unaffected. The baselined signal is given by yb = y – z. 
 
As in the previous example [4], the baselined signal, yb 
= y – z, is smoothed using a second call to 
datafit_engine with yb from the first call used as 
the input for measured signal. The changes to the 
options input are as follows. First initializing Ws to be 
the identity matrix I [options.ws = 
ones(1,size(oes1,2))] and then change the 
elements with peaks to have a small smoothing penalty 
[opts.ws(yb.data(1,:)>4) = 1e-5]. Next, 
trbflag is set to ‘none’ to use traditional least-squares 
fitting [options.trbflag = ‘none’] and the 
smoothing penalty is reduced to a more moderate level 
[options.lambdas = 1e3]. Finally, the basis fitting 
penalty, lb, is set to zero (opts.lambdab = 0). The 
results are shown in Figure 3 where the input was the 
baselined signal from the first call to datafit_engine 
(blue), the smoothed baselined signal (i.e., the signal of 
interest) is z (yellow) and the noise is now captured in 
yb (red). 
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Figure 1: Estimated baselines for all 46 OES spectra for the first 
call to datafit_engine using asymmetric least-squares fitting. 
(This is Figure 4 from [4]). 

 
Figure 2: Estimated baselines for all 46 OES spectra for the first 
call to datafit_engine using asymmetric least-squares fitting 
plus a fit to an offset (left y-axis). The diagonal elements of Wb 
are shown as having non-zero elements £1 and ³0 in the region 
244 – 300 nm (right y-axis). 
 

 
Figure 3: Baselined and smoothed signal from datafit_engine. 
(yellow), baselined signal w/o smoothing (blue), and noise (red) 
Asymmetric fitting was not used: trbflag = ‘none’. 
 

Conclusions: The datafit_engine function can be 
used to fit flexible non-linear baseline spectra using an 
asymmetric least-squares algorithm as seen in Figures 
1 and 2. Adding fits to basis functions provides 
additional flexibility to design a baseline fitting 
algorithm for a wide variety of signals. 
 
Likely the biggest potential confusion is being clear 
about the desired signal of interest. Recall that the input 
to datafit_engine is y and outputs are yb and z 
where yb = y - z and z is the smoothed fit to the data. In 
the first call to datafit_engine in this example, the 
desired output was the baselined signal yb1 = y1 – z1 
where the baselines were given by z1. (The subscript is 
given to indicate the call to datafit_engine.) In the 
second call to datafit_engine, the input y2 = yb1 and 
the signal of interest was the resulting smoothed 
baselined data given by z2. The output yb2 
corresponded to the noise removed from y2. 
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