
 
Research, Training, and Software 

196 Hyacinth Road 
Manson, WA 98831 

www.Eigenvector.com 
 

Fitting Smooth Curves Part II: Fitting with a Robust Algorithm 
Neal B. Gallagher 

 
Key words: Data fitting, smoothing penalty, basis functions, robust fitting 

 
Introduction: Flexible fitting of smooth curves to 
data was discussed in previous white papers [1,2] and 
were based on extensions to Eilers’ Perfect 
Smoother.[3] The tools are found in the wsmooth and 
datafit_engine functions in PLS_Toolbox and 
Solo.[4] In Part I, the datafit_engine function 
employed equality constraints and fitting to basis 
functions using penalty functions. In Part II (this white 
paper), the same objective function is used with a 
robust algorithm in the fitting to reduce the influence 
of outlier measurements in the fit.  
 
Whittaker Smoother with Equality Constraints and 
Basis Functions: The following objective function is 
used in the datafit_engine function to include 
equality constraints and fitting to basis functions  
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An example using robust fitting is given in 
PLS_Toolbox: run datafit_engine demo with 
option 3. The robust fitting is governed by the 
options.trbflag input (“top or bottom” flag) that 
allows fitting to the ‘middle’ of the data cloud or 
fitting to the ‘bottom’ or ‘top’ when baselining the 
data.  
 
In this example, plsdata available in PLS_Toolbox 
and Solo[4] includes temperature versus sample point 
(time) for a process. Figure 1 shows the temperature 
on Thermocouple 10 (blue) and smoothed versions for 
W0 = I and ls = 1, 10, 103 and 104 (smoothing penalty 
increasing) without robust fitting. Figure 2 shows the 
same data with a robust fit through the middle of the 
data cloud. As expected, smoothing increases as the 
smoothing penalty increases and the robust fit is less 
influenced by the strong dips at Sample Points 29, 51 
and 73. 
 
Another interpretation of the smoothed fit is that it can 
be used to characterize the long-term trend. For 
example, using robust fitting (trbflag = ‘middle’) and 
increasing the smoothing penalty to ls = 105 generates 
a smooth “quadradic” fit to the data, z, as shown in the 
top plot of Figure 3. As expected, the fit in Figure 3 is 
significantly smoother than the fits shown in Figure 2 
due to a larger fit penalty. Also, as before, the results 
in Figure 3 are not influenced by the strong dips in the 
data series. The short-term trend is given by yb = y – z 
[yb and z are outputs yb and z respectively from 
datafit_engine] as shown in the bottom plot of 
Figure 3 (red). The short-term trend (red) is compared 
to the mean-centered data (blue).  
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Figure 1: Measured Thermocouple 10 (blue) and smoothed data 
ls > 0. Robust fitting was not used: trbflag = ‘none’.  

 
Figure 2: Measured Thermocouple 10 (blue) and smoothed data 
ls > 0. Robust fitting was used: trbflag = ‘middle’.  
 
Robust fitting is generally governed by the optional 
tolerance input tol (options.tol). In the above 
this was input manually to tol = 2. In the iterative 
robust algorithm, fit residuals > tol at each iteration 
are considered large and corresponding elements of 
W0 are set to a small number thus reducing their 
influence on the fit. 
 
If not given, tol is determined automatically as the 
mean absolute deviation of the difference between the 
measured signal, y, and a Savitzky-Golay fit using a 
first order polynomial with a moving window width of 
three.[5] Robust fitting can then governed using the 
tolfac input (options.tolfac) where residuals > 
tol*tolfac would be considered large with respect 
to the fitting algorithm.  
 

 
Figure 3: (top) Measured Thermocouple 10 (blue) and smoothed 
data ls = 105 i.e., the long-term trend z (red). Robust fitting was 
used: trbflag = ‘middle’. (bottom) Mean-centered data (blue) 
compared to the short-term trend given by yb = y – z. 
 
Conclusions: Smoothing is a useful tool for providing 
interpretable trends and processing of time-series data. 
The additional flexibility of robust fitting (shown 
here), and equality constraints basis functions (shown 
previously [2]) gives the data analyst a powerful set of 
tools for fitting data. 
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