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 As modern sensor systems are taken from 
the lab to less pristine field operations, more is being 
asked of them. Under these conditions, it is difficult 
to find sensors that are perfectly selective for an 
analyte of interest in the face of background signals 
they are expected to encounter. To be perfectly 
selective, a sensor must respond only to the analyte 
of interest and nothing else. However, this situation is 
often difficult or impossible to achieve. Instead it is 
more common to find sensors responding to multiple 
analytes as well as interferences, and it is the task of 
detection and classification algorithms to sort out this 
“cross talk” from different signal sources. 

 A simple example can be given by 
imagining a two-channel sensor. In the first case, the 
response on the two channels to Analyte A at unit 
concentration is [1 0] and to Analyte B is [0 1]. This 
states that Analyte A only has a response on Channel 
1 and Analyte B only has a response on Channel 2 
and this system is perfectly selective for both A and 
B. However, in the second case the response to A is 
[1 0] and to B it is [0.2 0.8]. This shows that the 
response to B now “bleeds” into the response on 
Channel 1. If this cross talk were not accounted for, 
high concentrations of B could easily result in a false 
alarm for A as well as an alarm for B. In 
spectroscopic measurements, this type of cross talk 
manifests as overlapping peaks and occurs even for 
measurements in well-controlled laboratory 
environments. There are several methods to account 
for cross talk and one highly successful method 
utilizes the linear mixture model.[1] 

 In spectroscopic applications, the linear 
mixture model was proposed because it is directly 
relatable to Beer’s law for transmission 
measurements of multi-component mixtures. This 
model is also known as the classical least squares 
(CLS) model and it can be used with single or 
multiple target analytes. With advanced forms,[2] the 
CLS approach can be used to account for 
interferences as well. These models work by finding 
a response unique to each analyte in the system. For 

example, in the second case discussed above the 
unique signal for A at unit concentration is NA = [1 -
0.25] and for B it is NB = [0 1.25]. Now take the case 
where only pure B is measured in the system at unit 
concentration (i.e., the measured response is [0.2 
0.8]). In the CLS model, the measured response is 
first multiplied by the unique A signal NA yielding 
[0.2 0.8]*[1 -0.25]T = 0.2*1 + 0.8*(-1.25) = 0.† The 
second step multiplies the measured response times 
the unique B signal NB yielding [0.2 0.8]*[0 1.25]T = 
1*0 + 0.8*1.25 = 1. Therefore, if pure B is present 
the CLS model will not indicate a response on A but 
will indicate a response on B. In this example, the 
CLS model utilized both channels of the instrument 
to obtain a unique response for both analytes; it used 
the multivariate signal to improve selectivity of the 
system over the univariate response. As a result, the 
CLS model did not false alarm for analyte A due to 
the presence of analyte B as it would have if only 
Channel 1 was considered. 

 The simple example considered above 
neglected measurement noise. However, including 
additional channels in the measurement system, 
which typically results in more redundancy in the 
signal, can also result in higher signal-to-noise.[1] 
Other advantages of adding more channels to the 
instrument include adding the ability to detect more 
analytes and to detect unusual signal.[1-3] This latter 
advantage is often overlooked but should be 
considered a distinct advantage over univariate 
systems (and many types of low number channel 
instruments) and is one of the principles behind 
anomaly detection and process monitoring.[4] This 
type of signal can be used to monitor the health of the 
analytical instrument as well as identify the presence 
of new uncharacterized interferences (i.e., tell the 
user when something other than A and B are present). 
This is important because uncharacterized signal can 
bias a model’s output and easily result in false alarms 
if it is ignored. Because inverse least squares (ILS) 
methods are commonly encountered, it is good to 
note that ILS methods such as partial least squares 
(PLS) and principal components regression (PCR) 
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also find the signal unique to each analyte. The 
mathematical formulation for the ILS methods is a bit 
different but the concepts are similar to CLS models. 

 Because it is difficult or impossible to 
develop sensors perfectly selective for analytes of 
interest, modern sensor systems rely on multiple 
sensors (channels, frequencies or wavelengths) and 
multivariate analysis tools like classical least squares 
to extract relevant information. In fact, sensors are no 
longer viewed as just the measurement device alone. 
Instead, they are viewed as sensor systems that 
consider the measurement device, the signal due to 
analytes of interest and expected interferences (the 
sensing scenario), and the algorithms used to extract 
relevant signal. Coupled with good design of 
experiments and multivariate analysis tools, these 
systems are realizing the multivariate advantages of 
higher signal-to-noise, higher selectivity and 
enhanced measurement diagnostics. 
† This multiplication is known as an inner product in 
linear algebra where the corresponding elements are 
multiplied and the result is summed. 
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