
Research, Training, and Software

3905 W. Eaglerock Dr.
Wenatchee, WA 98801
www.Eigenvector.com

Deploying your PCA Model Online using PLS_Toolbox with OPC
Key words: OPC Standard, OPC Client, OPC Server

Introduction: OPC is a well accepted standard within
the process industries used for easily connecting
software and hardware from different vendors. The
MathWorks OPC Toolbox provides a powerful way to
deploy your multivariate analysis applications online.
Working in the MATLAB development environment
using PLS_Toolbox and the OPC Toolbox gives you:

• The flexibility and speed of working in
MATLAB.

• The power of state-of-the-art Multivariate
Analysis (MVA) tools in PLS_Toolbox.

• The ease of OPC integration with the OPC
Toolbox.

This document gives a brief introduction to these
technologies and an overview of strategies to develop
and deploy applications.

Background: OPC is a set of standards for
communicating in a “process” environment. OPC
compliant devices and software use a single standard
for talking to each other, thus avoiding the need for
working with thousands of individual drivers and
proprietary formats. OPC is based on Microsoft’s
COM/DCOM (distributed / component object model),
which provides the object model for OPC. See the
OPC web site, http://www.opcfoundation.org, for
further information.

OPC Basics: OPC has several standards but the three
core standards are Data Access (DA), Historical Data
Access (HDA), and Alarms and Events (AE). The DA
standard describes a protocol for data transfer in real-
time between clients and servers. Likewise, the HDA
standard governs the protocol for accessing historical
data. AE is concerned with real-time access to alarm
notifications.

OPC employs a "client-server" network architecture.
A server can take many forms and can implement
multiple standards (DA, HAD, etc). They typically are
shipped as a part of most SCADA, PLC and DCS
systems. A client is a requester of an OPC server.
Typically you can find HMIs (Human/Machine
Interfaces) acting as OPC clients.

Servers are identified in a network by Host Name and
Sever ID. A server will contain “tags” (data items) in a
“Name Space”. An example of a data item might be a

sensor, actuator position, or state variable. The server
is required to provide this Name Space to the network
where each tag has a unique ID within the Name
Space. A client can then connect to a specific server
and access the items on that server.

OPC Toolbox Organization: OPC Toolbox is a Data
Access client conforming to the OPC DA standard.
You can read and write real-time data from/to OPC
servers from within MATLAB, perform data logging
tasks, and interface with Simulink.

Objects in the OPC Toolbox are organized in a
hierarchy:

1) OPC Data Access Client (opcda) – Connection to
an OPC Server.
a) Requires a Host (the server computer) and

Server ID (Program ID of the server, created
when server is installed).

2) Data Access Group (dagroup) – Container for one
or more data items.
a) Manages how often child items are read.
b) Whether data is logged.
c) Must have opcda parent.

3) Data Access Item (daitem) – individual data
items.
a) Contains a value, quality, and timestamp

collected from an instrument or SCADA.
b) Data is current as of the last request made to

access that instrument.
c) Data can be logged.

OPC Toolbox can be used in both a command line
mode and through a GUI.

Using OPC with PLS_Toolbox: Typically, process
models are developed using large historical datasets.
During this state of development you would likely be
working off-line with PLS_Toolbox to create and



Research, Training, and Software

3905 W. Eaglerock Dr.
Wenatchee, WA 98801
www.Eigenvector.com

optimize your specific model(s). Acquiring historical
datasets may require the use of database querying
tools, third party utilities, or the data logging feature of
the OPC Toolbox.

Once you've developed a model you would then
design an application to apply the model to new
process data. Using the OPC Toolbox this becomes
very simple. It's a matter of acquiring data, applying
your model to the new data, and then
returning/displaying the results or writing the results to
an OPC server.

Principal Component Analysis (PCA): Let's assume
you've already created a PCA model and you want to
apply the model to a single new row of data and
examine Q and T2 contributions in real-time to see if
the new sample (represented by the row) is
significantly different than what you're expecting with
your model.

1) Create a DA Group containing the same variables
used to create your model.

2) Create a 'datachange' Callback function that
applies new data to the PCA model. The function
should provide for the following:
a) Load the model.
b) Acquire data from the group object and

transform it into a form that can be applied by
the model (vector or dataset object).

c) Apply the model to your new data.
d) Display or return your results (check Q and

T2 limits calculated when you created the
model).

3) Make this function the 'datachange' Callback for
the DA Group created in step one.

Exploring Data with PCA: In one example, you
might be looking for "oddball" samples in a dataset.
This is often accomplished using PCA and looking at
how data clusters in a scores-scores plot. Outliers in
this plot suggest an anomaly.

Although you could accomplish this using the logging
function of OPC Toolbox you may also wish to
continuously monitor a process in real-time.

1) Create a DA Group containing variables you wish
to explore.

2) Create a 'datachange' Callback function that builds
a PCA model on your stored data. The function
should provide for the following:
a) Acquire data from the group object and

transform it into a form that can be used by
the pca function (double or dataset object).

b) Append this onto a MATLAB 'persistent'
variable, this will retain the variable in
memory between calls.

c) Create a PCA model with your data.
d) Display the results (e.g., in a scores-scores

plot).
3) Make this function the 'datachange' Callback for

the DA Group created in step one.

In this scenario you could watch your process in real-
time and identify outlier samples. You could also
apply this type strategy to create a "trending" analysis
of your data.

Conclusion: OPC along with MATLAB,
PLS_Toolbox, and OPC Toolbox represent a simple
and effective way of integrating your data analysis
application into an online environment. MATLAB
provides a rapid development environment,
PLS_Toolbox gives you advanced MVA tools, and
OPC Toolbox provides a simple way of connecting to
your OPC network. This paper showed some simple
strategies of how you might integrate your process
model online with OPC. As you become more familiar
with the tools and techniques you'll undoubtedly find
more sophisticated and valuable ways to harness this
technology. For more information see the resources
listed in the next section.

Additional Information:

PLS_Toolbox
• www.software.eigenvector.com

Mathworks Products
• OPC Toolbox

www.mathworks.com/products/opc/
• Database Toolbox

www.mathworks.com/products/database/
OPC

• www.opcfoundation.org

PLS_Toolbox
Matlab
OPC Toolbox

Instrument 2 Instrument 1

Distributed
Control
Systems (DCS)

OPC


