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Introduction: Multi-way principal components 
analysis (MPCA) is finding utility in monitoring batch 
processes.[1] The steps included are data alignment (to 
account for differing batch lengths), data scaling, and 
construction of the MPCA model. In the present 
example, MPCA is applied to machine state 
measurements obtained during metal etch. (Wafer etch 
is analogous to batch processing in the chemical 
process industry.) In this case, the process mean drifts 
significantly between preventative maintenance cycles 
(PM) and slightly within a PM.[2] To account for this 
drift a moving window approach was used with the 
data mean reset at the beginning of each PM. 
 
Experimental: The data set consists of 14 engineering 
variables from a LAM 9600 Metal Etcher processing 
129 wafers over three PMs; 108 normal wafers and 21 
wafers with intentionally induced faults (raw data 
available at www.eigenvector.com).[1,3,4] The PMs 
corresponded to three experiments, Numbered 29, 31 
and 33, run several weeks apart. Data from different 
experiments have a different mean and slightly 
different covariance structure. Although faults were 
typically induced consecutively two to four at a time, 
in this simulation they were interspersed within the 
normal wafers with two or more normal wafers in 
between each fault. This arrangement was expected to 
simulate randomly occurring faults that might be 
expected in the process. The MPCA model was 
calibrated on a moving window of fourteen wafers and 
fault identification was based on the Q residual only. 
A warning was given at the 95% limit and a fault at 
1.6 times the 95% limit. The model was not updated 
on fault wafers. For visualization, Q contributions 
were block scaled to the mean and standard deviation 
of residuals from the updated model.[5] 
 
Results and Discussion: Data alignment is based on 
all fourteen variables (using the ALIGNMAT 
function) and the results are shown for the EndPt A 
variable (this is a broad band optical emission 
measurement) in Figs. 1 and 2. Alignment removes 
irrelevant variability that can reduce model sensitivity. 
 
Figs. 3 and 4 show the difference between autoscaling 
and block scaling of the data. It is clear that block 
scaling (using the GSCALE function) retains relative 
variance within a single variable trajectory whereas 

autoscaling tends to inflate irrelevant variance that can 
desensitize the model. 
 
Fig. 5 shows an RF fault identified in Experiment 33 
and Fig. 6 shows the corresponding Q residual 
contributions (block scaled to the calibration model 
residuals – analogous to using standardized residuals). 
Patterns in contribution plots combined with process 
knowledge are useful for identifying the cause of a 
fault. For this simulation, the sensitivity (fraction of 
faults caught) was 0.76, and specificity (fraction of 
normal wafers not alarmed) was 0.99. This is 
consistent with results from previous studies.[1,3] 
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Figure 1: EndPt A for Experiment 29: not aligned. 
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Figure 2: EndPt A for Experiment 29: aligned. 
 
Conclusions: MPCA and adaptive MPCA are useful 
process monitoring tools. Alignment of the process 
trajectory and block scaling were used to minimize 
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irrelevant variance in the process measurements. 
Block scaling of Q contributions also enhanced 
visualization of faults. Some faults are difficult to 
catch in any event, however the adaptive approach 
keeps the model local optimizing detection.[1]  
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Figure 3: EndPt A for Experiment 29: aligned and autoscaled. 
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Figure 4: EndPt A for Experiment 29: aligned and block scaled. 
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Figure 5: Q Residuals (top) and T2 (bottom) normalized to their 
respective 95% limits for Wafers 81 to 106. Wafer 106 (RF 
Power-12 W) was indicated as a fault. Wafer 82 (TCP Power-20 
W) and 101 (Cl-10sccm) were faults also. 
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Figure 6: Q Residual Contributions Wafer 106 (RF Power-12 
W). Contributions are high on Endpt A and low on Pressure.’ 
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