
RECENT ADVANCES IN MULTIVARIATE STATISTICAL PROCESS CONTROL:
IMPROVING ROBUSTNESS AND SENSITIVITY

B. M. Wise and N. L. Ricker

Center for Process Analytical Chemistry and Department of Chemical Engineering  BF-10,
University of Washington, Seattle, Washington  98195

Abstract   .  Several extensions are made to the theory of multivariate process monitoring via
Principal Components Analysis (PCA).  An important robustness issue is addressed:  the
continued use of the PCA model after detection of a sensor failure.  Without some
adjustment, a single failed sensor can obscure other failures, thus rendering the monitoring
method useless.  It is shown here that one can calculate an estimate of the output of the
failed sensor that is most consistent with the PCA model of the process.  This estimate
allows continued use of the model.  Under some circumstances, replacing the failed output
with this estimate is equivalent to rebuilding the entire PCA model.  Partial Least Squares
(PLS) regression can be used in a manner similar to PCA for process monitoring.  It is
shown that PLS is fundamentally more sensitive to sensor failures than PCA.  Unlike
PCA, however, the PLS monitoring scheme maps state information into the model
residuals.  For this reason, changes in the process state covariance and autocovariance can
invalidate calculated PLS model residual limits.  The failed sensor problem is also solved
for the PLS monitoring method.

Keywords   .  Principal components; partial least squares; failure detection; multivariable
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INTRODUCTION

Principal Components Analysis (PCA) has shown great utility as
a Multivariate Statistical Process Control (MSPC) tool when the
samples can be considered independent observations (Jackson,
1981; Veltkamp and co-workers, 1990; Wise and co-workers,
1991).  The utility of the method for monitoring dynamic
processes has also been shown (Kresta, MacGregor and Marlin,
1990; MacGregor, 1989;  Wise and Ricker, 1989).  Recently, a
theoretical basis for the use of PCA in dynamic systems with
measurement redundancy has been developed (Wise and co-
workers, 1990).  Briefly, the application of PCA to the
measurements from such systems confines variations in the
process states to the PCA "scores", and under normal conditions
the PCA residuals are white.  Statistical tests can be applied to
the PCA residuals to detect and diagnose a variety of abnormal
events.  A key advantage of this approach is that a complete
dynamic model of the system need not be developed.

Some important issues that bear on the robustness and
sensitivity of the monitoring method have yet to be addressed,
however.  One of particular interest concerns the continued use
of the PCA model after a sensor has been identified as having
failed.  If the data from the failed sensor continues to be included
in the monitoring system it has the tendency to “mask”
subsequent abnormal events.

It is also known that the PCA monitoring method may be quite
insensitive to particular sensor failures.  It has been proposed
(Wise, Ricker, and Veltkamp, 1989) that collections of Partial
Least Squares (PLS) regression models can be used in a manner
similar to PCA for process monitoring.  Results have shown that
this method may be more sensitive than PCA, but the reason for
this increased sensitivity was not clarified in previous work, and
the potential pitfalls of implementing this PLS approach have not
been addressed.

It is the purpose of this work to address both the robustness and
sensitivity issues.  In the sections that follow a method for
estimating the outputs of failed sensors is proposed and it is
shown that, under certain conditions, this method is equivalent
to rebuilding the entire PCA model.  This allows continued use
of the original model.  The relationship between PCA and PLS
monitoring is also explored and the reasons for the increased
sensitivity of the PLS method are demonstrated.  Potential
problems with PLS monitoring are also investigated.  Finally,
the failed sensor estimation problem is solved for PLS models.

BACKGROUND

The PCA method and the basis for its use in process monitoring
is reviewed in the following sections.  We also review the
proposed method for generation of PCA-like models via PLS.

Principal Components Analysis

Let X  be an m by n data matrix in which the rows are samples
and the columns are variables.  We assume that X  has mean-



centered such that its columns all have zero mean.  In PCA, X  is
decomposed into the sum of the product of n pairs of vectors
(Jackson, 1981; Veltkamp and co-workers, 1990).  Each pair
consists of a n by 1 vector called the loadings, pi, and a m  by 1
vector called the scores, ti.  Thus X  can be written as

X  = t1p1T  + t2p2T + ... + tnpnT (1)

The matrix of loadings vectors P forms a new orthogonal basis
for the space spanned by X  and the individual pi are the
eigenvectors of the covariance matrix of the mean-centered data
matrix X , defined as:

covariance X  = 1
m - 1

 XTX
(2)

 Thus

covariance (X )pi = λipi (3)

where  λi is the eigenvalue associated with the eigenvector pi.  If
X  has been autoscaled (i.e., mean-centered with each column
scaled to unit variance) the covariance matrix becomes the
correlation matrix.  The loadings vectors pi are referred to as
principal components because they are linear combinations of the
original variables that together account for large fractions of the
variance in the original matrix.  Each of the scores vectors ti is
simply the projection of X  onto the new basis vector pi:

ti = Xpi (4)

PCA is very closely related to the Singular Value Decomposition
(SVD) (Strang, 1980) where X  may be decomposed as

X  = USVT (5)

where V contains the eigenvectors (pi) and S  is a diagonal
matrix containing the square roots of the eigenvalues (the
singular values) of the covariance matrix of X .

When PCA is done on a data set, it is often found (and it is
generally the objective) that only the first few eigenvectors are
associated with systematic variation in the data, and the
remaining eigenvectors are associated with “noise”.  Noise in
this case refers to uncontrolled experimental and instrumental
variations arising from random processes.  PCA models are
formed by retaining only the eigenvectors that are descriptive of
systematic variation in the data.  Determination of the proper
number of eigenvectors can be done by cross-validation or other
techniques (Malinowski, 1977, 1987).  Once the PCA model is
formed, new data can be viewed as projections onto single
eigenvectors (scores plots) or the plane formed by pairs of
eigenvectors.  The scores can be used to obtain the "PCA filtered
estimate" of a given sample, i.e. the projection of the sample into
the PCA model.  For a reduced order model, Pk, (where only



the first k of the n total eigenvectors are retained) and a new
sample, x i, this is obtained from:

 x̂  i  = tkiPkT = x iPkPkT (6)

where tki is the (1 by k) vector of scores on the model Pk for
sample x i.

The "goodness" of fit between new data and the model can be
monitored by calculating residuals, i.e., the difference between a
sample and its PCA estimate.   The residual ri for sample x i is
given by

ri  = x i - x̂  i = x i(I - PkPkT) (7)

The magnitude of the residual for any sample x i is

Q = ririT = x i(I - PkPkT)x iT (8)

Basis for PCA Monitoring

The discrete state-space process model has the form:

x(k+1) = x(k) + u(k) + (k) (9)

y(k) = Cx(k) + Du(k) + e(k) (10)

Assuming that the process has n states, r inputs and p
measurements, then x(k) is the (n by 1) vector of state variables
at time k, u(k) is the (r by 1) vector of process inputs, (k) is the
(n by 1) vector of state disturbances, y(k) is the (p by 1) vector
of process measurements e(k) is the vector of measurement
noise, and , , C, and D are matrices of appropriate size.  For
most processes D is zero; process inputs rarely have an
instantaneous effect on the process outputs.  The dimension of
the state space can be greater than, less than or equal to the
dimension of the measurement space.  Many references
concerning the state-space formalism are available (Kwakernaak
and Sivan, 1972; Sage and White, 1977).

We have shown previously (Wise and co-workers, 1990) that,
for processes with more measurements than states, proper
application of PCA can facilitate the process monitoring and fault
detection problem.  This is done by identification of a PCA
model of the outputs y(k).  Under most circumstances, the PCA
model will span the same space as the C matrix in the
corresponding state-space representation of the process.  When
the PCA model is an accurate estimate of C, variations in the
process states x(k) appear primarily as variations in the PCA
scores, while noise e(k) mainly affects the residuals.  This
allows one to consider only the noise properties when deriving
statistical limits for the PCA residuals.  In particular, the process
dynamics need not be considered explicitly.  This implies that
conventional statistical methods that rely on independence of the



samples (such as t- and F-tests and the multivariate T2) can be
applied to the residuals.

PLS Monitoring    

Many references are available on the PLS method (Geladi and
Kowalski, 1986; Lorber, Wangen and Kowalski, 1987) so the
algorithm will not be repeated here.  Briefly, PLS works by
simultaneously decomposing both the input data block X  and the
output data block Y (a vector if there is only one output variable)
in such a way that the factor scores in the X  and Y blocks have
the maximum covariance.  The number of factors or latent
variables retained in the PLS regression model is optimized
based on prediction through a series of cross-validations.  The
parameters used in PLS prediction can also be reduced to a
single linear equation:

 Y
^

  = XB (11)

where B  is a matrix in the general case and a vector in the case
of only one variable in the Y block.  The result is Eq. (12)
where k is the number of latent variables to be used in the
prediction and it is assumed that the value of the term in brackets
is equal to I for the case of i = 1.

Y = X bi I - w jpj
T∏

j = 1

i - 1

w iqi
T∑

i = 1

k

(12)

In (12) the bi are the inner relation coefficients, the w j and the pj
are the X  block weights and loadings and the qi are the Y block
loadings.  Here the notation of Geladi has been used.

It is proposed that PLS can also be used to monitor processes in
a fashion similar to the use of PCA models.  This requires that
PLS models be obtained that relate each process output to the
remaining outputs in the system.  Thus for a system with n
outputs, n PLS models would be required.  Fortunately, using
the relationship given in Eq. (12) the n PLS models can be
formed into a single matrix, with each model being a column
vector.  Because each of the variables does not contribute to its
own prediction, the resulting prediction matrix, Mp, has zeros
on the diagonal.  Thus the "PLS filtered estimate" of a data
matrix X  can be obtained by simple matrix multiplication

 X
^

  = X Mp (13)

A residuals matrix, Dpls, can be calculated from

Dpls = X  -  X
^

  = X  - X Mp = X (I - Mp) = X  Rpls (14)  

where Rpls is the PLS equivalent of the I - PPT matrix in PCA.
Once the Rpls matrix has been calculated it can be used with new
data to produce PCA-like residuals.  These residuals can be used
with statistical tests to detect any changes to the process or its



sensors.  As will be shown, however, there are some important
differences between PCA and PLS monitoring.

IMPROVING ROBUSTNESS

As mentioned previously, if the data from failed sensors
continues to be included in the PCA monitoring system it can
mask additional failures, rendering the monitoring system
useless.  In this sense the system is not very robust; it is only
capable of detecting the first sensor failure.  It seems logical that
there should be an optimal way of either replacing “bad” data or
modifying the existing PCA model so that changes in other
variables can be observed, without reforming the entire model.
The solution to the problem of replacing data from single or
multiple sensors follows.

Estimating Failed Sensor Outputs   

Assume for the moment that the PCA model of the process of
interest has been calculated, and that the matrix used for
calculating the residuals has been obtained:

I - PkPkT = Rpca (15)

The Q residual for any sample x  (a row vector) can then be
calculated as:

Q = xRpcaxT (16)

Suppose now that one or more sensors have failed and have
been detected.  Further, suppose that it is convenient to partition
x  (possibly by rearranging the columns of x) into a group of
“bad” sensors xb, and a group of good sensors xg.  Thus:

x  = [xb xg] (17)

It is possible to partition R into parts that act on each of the
groups of good and bad sensors individually:

Rpca = R11 R12

R21 R22 (18)

The Q residual is now calculated as:

Q = xb xg  R11 R12

R21 R22
 xb

T

xg
T

(19)

By multiplying this through, and using the fact that R21 = R12T,
the following expression for Q is obtained:

Q = xbR11xbT + xgR21xbT + xbR21TxgT + xgR22xgT (20)

It would seem logical to estimate xb based on the value which
minimizes Q.  This estimates the failed sensor output as the
value which is most consistent with the PCA model.  Note that
in Eq. (20) the last term is a function of xg and R22 only, and is



therefore fixed.  The problem of minimizing Q then becomes the
problem of minimizing the first three terms on the right hand
side of (20).  Thus the objective becomes to find:

x̂  b ∀ {xbR11xbT + xgR21xbT + xbR21TxgT} = min (21)

Fortunately, this problem can be easily solved by “completing
the squares” (Åstrom and Wittenmark, 1984).  The result is:

x̂  b = -xgR21R11-1 (22)

Because Rm is fixed, the value of xb for any new sample can be
calculated from

x̂  b = xgRR (23)

where RR is the regression matrix formed from Rm:

RR = -R21R11-1 (24)

which can be calculated once and retained.  Calculation of RR
should be possible because R11 will be positive definite
provided that none of the variables to be solved for are totally
independent, i.e., not correlated with any of the other outputs of
the system.  Computationally, the biggest problem occurs when
the bad variables are not in a “convenient” location and the
matrices R11 and R21 must be extracted from Rpca.  The process
for doing this is shown in Fig. 1.  Here sensors 2 and 5 are
assumed to have failed.  The figure shows how the parts of the
original Rm matrix map into R11 and R21.

Once RR has been obtained, it can be mapped into an identity
matrix in such a way that multiplication of new samples by this
matrix, the “replacement” matrix Rm, results in the bad variables
being replaced by their values that minimize Q.  The mapping is
shown in Fig. 2.  The solid black squares in the figure represent
“ones”, the white portions represent “zeros” and shaded portions
are occupied by the regression matrix.

It is found that when new samples are multiplied by Rm the
PCA residuals of the replaced variables are identically zero.
This can be seen by substituting the estimates of xb back into
Eq. (20).  This also leads to an expression for the minimum
value of Q.

Qmin = -xgR21R11-1R21TxgT + xgR22xgT (25)

The problem now is that the resulting Q values will tend to be
artificially low.  In order to remedy this, it would be possible to
add a “white” noise signal of zero mean and appropriate variance
to the estimate of the failed sensor outputs.  However, it may be
that for most practical monitoring problems adding noise is
unnecessary.  Using the original calculated limits may be close
enough, particularly in cases where there are many variables



2

5

R

R

Original R

11 12

21
22

R

R

Rearranged R

Fig. 1.  Obtaining R11 and R21 from original Rpca matrix.

R
R

"Replacement" MatrixRegression Matrix

Fig. 2.  Mapping of RR into Rm.

relative to the number of PCs retained in the model.  In this case
the loss of the variance due to one variable has only a small
affect on the total residual.  The variance of other residuals will
be slightly decreased, making the original limits at an effectively
higher confidence level.  In many applications the difference
would be insignificant.

The alternative to replacing bad variables in an existing PCA
model is to re-calibrate the model, omitting the failed sensor.
This approach was compared to the method outlined above.  The
somewhat surprising result is that the two methods are
equivalent.  In the noise free case, where the data is truly rank
deficient, the two methods produce identical results (Wise,
1991).  In the presence of noise, the solutions are approximately
equal and usually very close to one another, provided that a
sufficient number of samples are available for re-calibration.

Example of Failed Sensor Estimation    

The system given in Wise and co-workers (1990) is used here to
generate an example of improved robustness.  Briefly, the
system model has 5 states, 5 inputs and 10 measurements.  The
system is driven by white noise of unit variance and the variance
of the measurement noise is equal to the deterministic variance of
the outputs.  A 5 PC model was identified from 1000 samples.
A new data set of 500 samples was generated, but this time a
bias of 3 units was added to output 1 starting at sample #201 and
to output 5 at sample #301.  The upper plot in Fig. 3 shows Q
for the new data set along with the 95% Q limit.  Note how the
system detects a change at sample #201, as expected.  The
change at sample 301, however, is not obvious.  In the bottom



plot the bad output was replaced as above starting at sample
#201.  Note how the failure at sample #301 is now obvious.

In Fig. 4 the residuals resulting from replacing the failed output
are compared to the residuals on an entirely new model
constructed without the failed sensor.  Residuals are shown in
the upper plot for sample #201 and in the lower plot for sample
#301.  Note how the replaced output residuals (circles) are zero
on the first output, as expected.  The new model residuals (x's)
are nearly identical to the replaced output residuals for outputs 2
to 10.  (There is no output 1 in the new model.)
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This example demonstrates that estimating the outputs from
failed sensor is a viable alternative to rebuilding the entire PCA
model.  One advantage of the method is that it allows continued
use of any plots being used for monitoring, including any scores
plots, without modification.  Detection of additional failures is
also enabled, though the original statistics on the residuals will
be only approximate.



PLS MONITORING

In Wise, Ricker and Veltkamp (1989) it was demonstrated that
PCA-like residuals could be generated with PLS, and that the
detection limits were often much improved over PCA
monitoring.  This section provides a basis for the PLS
monitoring approach and compares the effectiveness of the PLS
monitoring method to PCA monitoring using synthetic data.
The section closes with the solution to the "bad variable"
problem for PLS monitoring that was solved for analogous PCA
problem in the previous section.

A Basis for PLS Monitoring    

In the following paragraphs it will be shown that PLS
monitoring is a logical extension of the PCA monitoring.  The
argument proceeds as follows:  it is shown that a PCA model
can be converted to another form that has detection power
identical to the original model.  This transformed model has the
form of a collection of regression models, arranged in a manner
similar to the collection of PLS models described above.  A
collection of PLS models, therefore, is simply an optimization of
these regression models to improve their predictive ability.
Furthermore, the PLS models make no assumptions concerning
the intrinsic dimensionality of the output variable space.

Suppose that we have a discrete LTI process with noise and with
fewer states than measurements in the state-space form as
defined by Eqs. (9) and (10).  Furthermore, suppose that an
accurate PCA model Pk has been determined for the system,
i.e., Pk spans the same space as C from the "true" state-space
model of the process.  Using the notation of the previous
section, with Rpca partitioned as in Eq. (18), it is possible to
write the residual on the first variable r1(k) as

r1(k) = R11C1x(k) + R12C2x(k) + R11e1(k) + R12e2(k) (26)

where C1 corresponds to the first row of the state-space C
matrix and C2 is equal to the remaining rows 2 to p.  It is known
that if the PCA model is accurate, the first two terms on the right
hand side of Eq. (26) sum to zero, i.e. the states make no
contribution to the residuals.  Thus

r1(k) = R11e1(k) + R12e2(k) (27)

Suppose now that the PCA model is transformed so that the
residuals on the transformed model rt are defined as

rt(k) = y(k) - ŷ(k) (28)

where each of the yi is estimated based on the variable
replacement method defined above, e.g., for the first variable in
the system

y
^
 1(k) = -y2R12R11-1 (29)



The first transformed model residual rt1(k) can now be written in
terms of the state-space model parameters as

rt1(k) = C1x(k)+e1(k)+C2x(k)R21R11-1+e2(k)R21R11-1 (30)

Note the correspondence between Eq. (30) and Eq. (26).  It is
easily seen that the residual r1(k) is different from rt1(k) by a
factor of R11-1.  Furthermore, it can be seen that the transformed
model will have fault detection "power" identical to the original
model: the ratio of the expected size of the residuals to the size
when a fault has occurred is the same for both the original and
the transformed models.  When the model is transformed in this
manner, if a single variable changes, its residual changes by the
same amount.  Thus, the entire PCA model for calculating
residuals Rpca can be transformed to Rt as follows:

Rt = Rpca(diag(Rpca))-1 (31)

where diag(Rpca) is the matrix containing the diagonal elements
of Rpca.

It is clear that the transformed model Rt has the form of a
collection of regression models.  Now, because of the
"normalization" of the residuals, the predictive ability of Rt can
be compared directly to a collection of PLS models Rpls as
proposed in Eqs. (11) to (14).

The system used in Wise and co-workers (1990), will again be
used as an example to compare the predictive ability of the
methods.  For the test, data was generated exactly as described
above, except that the noise level was varied from 0 to 1.0 times
the noise level specified previously in increments of 0.1.  In
each case 1000 samples were generated and PCA and PLS
models, Rt and Rpls, were formed.  In each case the PCA model
retained 5 PCs.  The number of latent variables in each of the
PLS models was optimized based on prediction error using
cross validation.  The predictive ability of the models was then
tested on a new data set with the same noise level as the
calibration set.  Note that the only difference in each of the
calibration and test data sets was the noise magnitude.  Identical
input and noise sequences were used.

The results of a subset of the prediction error tests are shown in
Fig. 5.  The results are shown in terms of the percentage
decrease in total sum of squares prediction error for the PLS
model as compared to the PCA model, e.g., for variable 7 and a
noise level of 0.9 times the base noise level, the PLS model sum
of squared error was almost 60% less than for the PCA model.
Note how the difference in predictive ability of the models
increases as the noise level is increased.  It is also evident that
there is a larger difference for some variables than for others.

The results of this experiment show why PLS based residuals
might be superior to those based on PCA.  With the PCA model
transformed in this manner, the change in a residual given a
change in a variable due to error is identical for both the PCA
and PLS models.  However, the PLS model residuals under



normal conditions are substantially smaller than the PCA
residuals.  Therefore, for the PLS model the change due to error
is relatively larger, and should be more easily detected.

Comparison of the models Rt and Rpls themselves showed
some interesting trends.  When the noise level is zero the models
are identical, as might be expected.  As the noise level is
increased, Rt changes very little.  This is consistent with
experience which has shown that it is possible to identify an
accurate PCA model even when the noise level is quite high.
Rpls, on the other hand, changes a great deal as the noise
becomes very high.  For optimum predictive ability, the model
requires fewer latent variables, as would be expected.  In
general, the coefficients of the model tend to get smaller, though
for some variables they may get larger.  This trend is indicative
of the shift towards fewer latent variables, which tends to spread
the predictive ability of the model over more variables rather than
concentrating it on a few.

Fig. 5. Percent improvement in sum of squared prediction error
for PLS models over PCA models.

While it can be expected that the PLS model Rpls will be more
sensitive to changes in the process data, it cannot be expected
that the residuals will behave as in the PCA case.  In general,
PLS models do not produce zero-mean residuals.  Furthermore,
to the extent that Rpls lies outside of the subspace spanned by
Rpca, it can be expected that some state information will be
mapped into the residuals.  Because the states are usually
autocorrelated, the PLS residuals will be also.  This is shown in
Fig. 6, where the autocorrelation function (ACF) of the PLS
residuals is shown along with the ACF of the process outputs.
For this test the process was driven by a Pseudo Random Binary
Sequence (PRBS).  It is apparent that there is a good deal of
autocorrelation in the residuals.  There is no autocorrelation in
the corresponding PCA residuals, which are not shown.  If the
autocorrelation in the states changes (perhaps due to a change in
input behavior or a disturbance), then the autocorrelation of the



PLS residuals would also be affected.  Any change in the
autocorrelation of the residuals would have the affect of making
the control limits invalid.  Thus, any PLS detection scheme
based on a particular correlation structure in the process states
would become invalid given a change in the state behavior.

In spite of the autocorrelation in the residuals, the detection
limits for the PLS models (adjusted to account for the
autocorrelation) are better than for the PCA models.  This is
shown in Fig. 7, where the approximate detection limits are
given for the PCA and PLS models.  Here the limits are based
on a 20 sample window and 99% confidence.  The PCA limits
are calculated directly from theory as shown in Wise (1990).
The PLS limits are based on the observed mean and standard
deviation of 20 sample subgroups of the process data.  Note that
the PLS limits are better for all variables, but the difference is
more significant for some than others.
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It was pointed out in Wise and co-workers (1990) that the
assumption that any process has a finite number of states is
clearly an approximation, although generally a useful one.
Thus, it is an approximation to say that the data from any
process (where measurements are made at different locations) is
intrinsically rank deficient.  The PLS monitoring method, on the
other hand, makes no assumptions about the intrinsic rank of the
process data and, therefore, about the order of the process
producing it.  Instead, the PLS models are built up individually
and the criteria for the models is the predictive residual error.
Thus there is no "cutoff" approximation as in the PCA models.
It could be said, however, that in each PLS model the number of
factors used for prediction is an estimate of the number of
process states that are relevant in the prediction of each output.

Comparison of PCA and PLS Monitoring    

The ability of the PCA and PLS models to accurately identify
sensor bias and was tested through simulation.  Two new 1000
sample data sets were generated using the example model.  In
the first case the model was driven by white noise (as in the
calibration set) and in the second case the model was driven by a
PRBS, which has considerably more power at low frequencies.
The data sets were broken into 50 segments of 20 points each
Bias was then added to each variable in the segment in turn, and
the residuals were calculated and tested for significance.  The
"failed sensors" were identified based on the ratio of the residual
mean or standard deviation to the appropriate limits, i.e., the
output with the largest relative residual was assumed bad.

The results of the error detection simulation are shown in Table
1.  The table is divided into two sections corresponding to the
case of white noise input to the model or the PRBS sequence
which is autocorrelated.  The results for the PCA model are the
four columns on the left while the PLS model results are the four
columns on the right.  Each of the four columns corresponds to
a different level of added bias or noise.  The basis for the bias
and noise levels is the scaled outputs, i.e., a bias of 0.5 indicates
that a bias of 0.5 units was added to the scaled variable. The
original scaling, which resulted in a mean zero unit variance
calibration set, was used in the test.  A noise error of 1.0
corresponds to adding white noise of unit standard deviation to
the scaled outputs.  The row labeled "Correct" indicates the
number of times the method correctly identified the proper
variable has having added bias.  "None" indicates the number of
times there were no variables over the limits.  "Incorrect"
indicates the number of times an out of bounds variables was
detected but the wrong variable was indicated as faulty.  The
sum of the "Incorrect" and "None" categories is given in the
final line of the table.



TABLE 1.  Error Detection Simulation Results for Bias Errors   

Model Input White Noise
             PCA Model                    PLS Model            

Bias Size                  0.5            1.0            1.5             2.0            0.5            1.0            1.5              2.0    
Correct 141 423 485 499 229 485 499 500
None 286  29   1   0 187   4   0   0
Incorrect  73  48  14   1  84  11   1   0
Co. + Inco. 359  77  15   1 271  15   1   0

Model Input Correlated PRBS
             PCA Model                       PLS Model         

Bias Size                  0.5            1.0            1.5             2.0            0.5            1.0            1.5              2.0    
Correct 153 438 492 500 186 412 473 492
None 298  24   1   0  89   2   0   0
Incorrect  49  38   7   0 225  86  27   8
Co. + Inco. 347  62   8   0 314  88  27   8

It is clear that, under the same conditions as the calibration data,
(in this case a white noise input), the PLS model performance is
superior.  When the model input is changed to PRBS, however,
the PLS model performance suffers considerably while the PCA
model performance is essentially unchanged.  This degradation
of the PLS model performance is due to the mapping of state
information into the residuals.  When the autocorrelation in the
states changes, the PLS residual limits become invalid.

Improving PLS Model Robustness   

Like the PCA models, the unmodified PLS models will become
useless after one sensor failure.  However, outputs from failed
sensors can be estimated based on the collection of PLS models
in the same way as for PCA models.  It is possible to solve for
the values of xb which minimizes the magnitude of the residual
vector.  The lack of symmetry in the Rpls matrix causes a minor
complication, however, the result is

xb = -xg((R21 + R12T)/2)R11-1 (32)

where it is understood that the Rpls matrix has been partitioned
as in Eq. (18).  It is interesting to note that, while the residuals
on the bad variables becomes zero in the PCA case, it does not
in the PLS case.  Instead, the new residuals on the bad variables
are:

rb = -xgRave + xgR21 (33)

where

Rave = (R21 + R12T)/2 (34)

So to the extent that R21 is not equal to R12T the residuals on the
fixed variables will not be zero.



CONCLUSIONS

This article has shown how the robustness and sensitivity of
MSPC can be improved.  Replacing a failed sensor output with
its PCA-based estimate allows for detection of additional
failures, which would otherwise be obscured.  Furthermore, this
method produces residuals that are nearly identical to the
residuals from an entirely new PCA model.

PLS can be used in manner similar to PCA for failure detection.
It has been shown that the use of predictive ability as the basis
for model selection makes PLS more sensitive than PCA.  The
major drawback of PLS is that it produces residuals that are
autocorrelated, due to mapping of state information into the
residuals.  The autocorrelation in the residuals can change when
the autocorrelation in the states changes, invalidating the
calculated limits.
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