
Background
• Recent paper by Pell, Ramos and Manne (PRM) pointed out differences 

in how PLS X-block residuals are calculated in NIPALS (and SIMPLS) 
compared to Lanczos Bidiagonalization

• Claimed NIPALS residuals were “inconsistent” and amounted to “giving 
up mathematics”

• Previously, Eldén showed that NIPALS and Bidiag give the same solu-
tion for the regression vector, a consequence of NIPALS weights and 
Bidiag weights being the same  

• In response to PRM, Bro and Eldén pointed out that NIPALS residuals 
are independent of the PLS X-block scores, and thus, of the predicted y-
values, while this is not true of Bidiag

Questions
• Are NIPALS and Bidiag residuals always different? 

• Are there some situations where they are the same?

• When are they most different?

• When they are very different, which is preferred? 

Comments
• NIPALS PLS similar to power methods for finding eigenvectors of  

XTX, but it just does 1.5 iterations

• If you iterate between (a) and (b), replacing y with t, you will get 
NIPALS PCA

• The w’s will be loadings (eigenvectors of XTX) and the t will be the 
(normalized) scores of X 

• Thus, the PLS loadings p can be seen as a rotation of the w’s 
towards the largest eigenvectors (upon which they have a projection)

• Note: rotation is out of the space of the w’s
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T(d) X is modeled as scores t times loads p

Residuals in NIPALS versus Bidiag
• X-block residuals are calculated from 

 Xk = X – TkPk
T

• In the column space of X the residuals are orthogonal to the scores, T

• In the row space of X, the residuals are orthogonal to the loadings, P

• In Bidiag, the residuals of X are orthogonal to the weights, W 

Differences in Residuals
• Differences in residuals between NIPALS and Bidiag come down to 

differences in the subspace spanned by the loadings P and weights W

• But the loadings P are just the weights W rotated towards the 
eigenvectors (out of their own subspace)

• So any time a weight w is close to an eigenvector, the corresponding 
loading p will be nearly unchanged
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Numerical Experiment #1
• Take some X data (ceramic melter), center it and decompose it with 

SVD/PCA

• Create a series of y vectors, morphing from the 1st PC to the 2nd, 
then the 2nd to the 3rd, and so on

• For each increment, calculate a PLS model via NIPALS

• Look at the angle between p and w for the first LV
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Summary of Experiment #1
• There is no difference between the first weight and the first loading 

when the y vector lines up with an eigenvector, i.e. is a function of the 
scores of only one PC

• How large the difference is between a weight and a loading depends 
upon the ratio of successive eigenvalues, i.e. the difference in variance

• 100% of y variance is captured with either one or two LVs (regardless 
of how little X variance is explained)

Numerical Experiment #2
• What if y is a function of first 3 PCs?

• Determine angle between first weight w1 and loading p1 
over space of 3 PCs

• Determine angle between subspaces formed by first 3 LVs
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• Angle between P3 and W3 = Zero!

• If y constructed of only the first 3 PCs, the loads and weights of the 
appropriate ≤3 LV model span the same space

• All models along edges of ternary diagram need only two LVs to 
capture 100% of y variance

• All models in corners need only 1 LV to capture 100% of y variance

Summary of Experiment #2
• The maximum number of LVs required by a PLS model is equal to 

the number of PCs upon which y has a projection 

• For PLS models with this number of LVs, W and P span the same 
space, therefore, NIPALS and Bidiag produce identical residuals

Note that angle between 
subspaces is zero in all 
corners

 Note that angle between 
subspaces is zero along 
all edges

Example with NIR Data
• Example uses NIR_data from PLS_Toolbox

• Build model for first of the 5 components

• Look at results when using 5, 6, 7 & 8 components

              Number of factors
         5         6         7         8
Ypred 85.7434   87.9435   88.2786   88.7700

LV1   90.0000   90.0000   90.0000   90.0000
LV2   90.0000   90.0000   90.0000   90.0000
LV3   90.0000   90.0000   90.0000   90.0000
LV4   90.0000   90.0000   90.0000   90.0000
LV5   81.4703   90.0000   90.0000   90.0000
LV6             36.5911   90.0000   90.0000
LV7                       43.6221   90.0000
LV8                                 49.7017

Angle Between Bidiag Residuals and ypred, scores
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Summary of NIR Data Example
• Correlation between Bidiag residuals and last score can be 

significant, but is variable

• This governs degree of difference between Bidiag and NIPALS 
Q values

Conclusions
• Difference in residuals between Bidiag and NIPALS is due to differences in 

space spanned by loadings P and weights W
• Loadings are weights rotated towards eigenvectors
• Because of this Bidiag residuals will always be larger than NIPALS residuals
• Some simple situations produce identical residuals  
• Unlike NIPALS, Bidiag residuals can be correlated with last score tk and ypred

• Degree of correlation is variable but can be significant
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Revisting PRM Example
• PRM used melter data from PLS_Toolbox 

• Built model from 300 sample calibration set (5 outliers removed) 

• Tested on 200 sample test set

• Noted differences in Q residuals
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Compare to Figures 2 and 3 in PRM (identical)

• Many of the samples with high residuals in Bidiag but not in 
NIPALS have high scores on 3rd PC

• Thus, they are included in BOTH Q and T2

Summary of PRM Example
• Residuals in Bidiag can be significantly correlated with scores, 

and thus, ypred

• Correlation is always between last score and Bidiag residuals

• Consequence of deriving each new weight wk+1 from X deflated 
by TkPk

T, which forces each new weight wk+1 to be orthogonal 
to the previous loadings Pk

• Unique samples can be counted twice in Bidiag, because Q and 
T2 subspaces are not orthogonal

Angle between Bidiag residuals and ypred = 85.5298 degrees
Angle between NIPALS residuals and ypred = 90 degrees

Angle Between Residuals and First 3 Scores
   Bidiag NIPALS
    90.0000   90.0000
    90.0000   90.0000
    46.9120   90.0000

correlation coefficient = 0.68 correlation coefficient = 0.00

See also!


