Chemometrics in Process Analytical Technology (PAT)A Six Sigma Perspective

Charles E. (Chuck) Miller, Ph.D. Eigenvector Research, Inc.

©Copyright 2008
Eigenvector Research, Inc.
No part of this material may be photocopied or reproduced in any form without prior written consent from Eigenvector Research, Inc.

SIX SIGMA CERTIFICATE

Charles E. Miller

OF GLOBAL SERVICES

after having completed training and Project Requirements.

Master Black Belt

James B. Porter, Jr. - Vice President-Engineering and Operations

Certification Date
December 17, 2003

Why this talk?

- I like to talk about process analytical chemistry (PAT) and chemometrics a lot
- Concepts from Six Sigma training often "creep" into the discussion
- Explore the relationship between Six Sigma (6σ), PAT, and chemometrics

Outline

- Introduction to Six-Sigma (6σ)
- Relationships: 6σ, PAT, Chemometrics
- What can Six-Sigma bring to PAT, Chemometrics?
- Summary

Six Sigma (6σ)

- A process improvement program
- Formulated in 1986, for Motorola
 - Heavily influenced by teachings of Shewhart, Deming, Taguchi, Ishikawa, Juran, and others
- By 2000: ~2/3 of Fortune 500
 - DuPont since 1998
- Summarize into four components:
 - A PROCESS,
 - A TOOLKIT,

5

- AN INFRASTRUCTURE, and...
- A PHILOSOPHY!

Technical definition:
3.4 defects per million
opportunities

The Six-Sigma Process: "DMAIC"

- NOT LINEAR!
 - Often backtrack
- Similar process
 ("DMADV"), for R&D
 projects

The Six Sigma Toolkit

- Statistical tools
 - Design of Experiments
 - "Classical" Data analysis (i.e., ANOVA, linear regression)
- Organizational Tools
 - Process mapping, brainstorming
 - Templates/guides
 - Risk Management

The Six Sigma Infrastructure

The Six Sigma Philosophy

- Data-driven decision making
 - vs. Folklore-driven
- Real financial verification of a project's impact
 - Validated by accountants (vs. "handwaving")
 - Comparable between functions, departments
- Strong, Top-down management support

Six-Sigma Detractors

- Another one of those "bogus" programs?
- Charles Holland (Qualpro)
 - 54 of 58 "large companies" implementing it are "lagging behind" in S&P 500
- Other criticisms
 - Stifles creativity, innovation
 - Offers nothing new
 - Too "inward looking"

But, it's NOT going away!

- Now, 100s of companies utilizing it
 - At least 100 in current Fortune 500
 - US Military
 - Wide diversity of business segments
- WHY the traction?
 - Toolkit rather similar to TQM, other previous efforts, BUT...
 - Better use of resources
 - Different corporate attitude
 - Easier project vs. project comparison

11

Relationship: PAT and Chemometrics

Enabling technology for multivariate PAT (NIR, Raman, FTIR..)

Exploratory tools (MCR) support PAT scouting!

Supports process modeling/simulationto show PAT value!

Chemometrics

High-value chemometrics deployment opportunities!

PAT

Relationships: PAT, Chemometrics, 6σ

Multivariate data analysis toolset (cluster analysis, variable selection, cross-validation)

Chemometrics

Empirical modeling philosophy

High-frequency, high-relevance DATA!

Relationships: PAT, Chemometrics, 6σ

Chemometrics

BUT...

What does Six-Sigma bring to Chemometrics/PAT???...

How Six Sigma can help Chemometrics/PAT

Tools

PAT/Chemometrics Scenario

Existing

PAT/Chemometrics application

"Not performing well-enough" to be useful

The plant might "scrap it"

Define: Voice of the Customer

Define Phase:

- Time-saving project phase
- Problem definition/information-gathering
- Get the "Voice of the Customer"
- Seems trivial, but
 - WHO are the customers?
 - **HOW** do you get their "voice"?
 - WHAT questions do you ask them?
 - **HOW** do you "process" their responses?
- Interpersonal skills
 - BE ANNOYING, PERSISTANT!

WHO are the customers?

Process engineers

Chemometrics Software Users?

Process operators

Operations Management

Maintenance Technicians

Project Engineers

WHAT do I ask them?:

- what precision is required of the analyzer?
- can calibration samples be extracted from the process?
- how often does the sampling system "foul"?
- are analyzer outputs useful during product transitions?

What to do with the answers?

"sampling system fouls too much"

"outputs for analytes a&b are too noisy for control"

"transitions from product D to E are problematic" "there are too many analyzer outputs"

"model deployment S/W is not stable"

"we really need a NEW method, for analyte z" "output for analyte c is unstable at certain times"

"instrument hardware is very hard to service" Affinity diagram

methods

"we really need a NEV method, fo analyte z"

"output for analyte c is unstable at certain times"

Method usage

"transitic analytes a&b from proc are too noisy D to E a problema"

infrastructure

"sampling system fouls too much"

"instrument hardware is very hard to service" "model deployment S/W is not stable"

"there are too many analyzer outputs"

Helps to focus on the REAL problems!

Copyright 3 2001 United Feature Syndicate, Inc.

Measure: Measurement System Analysis

• Measure Phase:

- Identify "The Project Y"
 - Ex. Effectiveness of Analyzer output "B"
- Establish "baseline" performance
- Assess, validate *existing measurements*!
- Measurement System Analysis (MSA)
 - Is an existing measurement *capable* of assessing analyzer output quality?

Measurement System Analysis

1. Identify *all* possible variation sources

Operator

Instrument ID Reagent supplier

3. Analyze data with appropriate tool (Gage R&R, ANOVA,...) to get measurement error, and contributions to error

Gage Error (GRR): 0.0987

2. Design and execute "variability experiment" on system

	Ref. Method Measurements					
Sample ID	Operator A	Operator B				
1	2.650	2.698				
2	2.096	2.115				
3	3.033	3.015				
4	2.712	2.698				
5	2.111	2.125				

4. Compare error(s) to *Performance Specs*

Performance
Spec (+/-)
2.000

Analyze: Impact/Control

- Analyze Phase:
 - Identify ALL sources of variation in The Project Y (called "X"s)
 - Explore X/Y relationships
 - Start with many X's, reduce to a few critical X's
- Useful Tools
 - Cause and Effect ("fishbone", Ishikawa)
 - Process Map
 - Impact/Control Matrix

Process Map

WHAT impacts analyzer effectiveness?

Impact/Control Matrix

Focus on high impact and high controllability!

If high impact and low controllability- must address!

Improve: Model Piloting

Improve Phase:

- Quantify changes needed to optimize improvement
- Demonstrate that these changes will improve the process
- What are tolerances in new settings?
- Useful Tools:
 - Risk assessment: FMEA!
 - Design of Experiments
 - Piloting the solution

Model Piloting Tool

B. Wise, "Tools for Multivariate Calibration Robustness Testing with Observations on Effects of Data Preprocessing", CAC 2008

• Control Phase:

- Implement "sustainable" solution
- Assess REAL impact
- Documentation, Translation
- Useful tools
 - Control charts
 - Control Plan: "lock in the gains"!

	Dept. or Indiv.	Property	CTQ or X	Spec.	Meas. Tech.	Sample Size	Freq.	Who Measures	Where Recd.	Response Plan		
ı										Action	Timing	Owner
I												

Control Plan- PAT/Chemometrics

Quick model updating capability

Field PC

Periodic auditing of DEPLOYMENT

Monitor model performance: Hotelling's T2, Q

Residuals

software

Final Model Package On-line model Model parameters Interpreter Model Real-Time Application Analyzer Data Math Analyzer Field Model Control Analyzer **Outputs** Software Model Analyzer Deployment Control Software Parameters Modbus. DCS 4-20mA, etc...

Remote Access
(PCAnywhere/Tim
buktu): Enabling
Technology!

Six Sigma Questionnaire

- Current & former DuPont colleagues
- Which element(s) of Six-Sigma do you feel were the most useful to your work?
- Did your "Six-Sigma experience" affect the way you operate?
- 8 respondents
 - 1 Master BB, 1 BB, 6 GB
 - 3 process analytical, 1 PAT management, 2 statisticians, process modeler, project engineer

Questionnaire results

- Most useful elements:
 - Statistical toolset (3)
 - Voice of Customer tools (2)
 - Data-driven decision making (2)
 - Gage R&R (1)
 - Management Top-Down approach, "Bite-sized" projects, Documentation discipline, "Locking in" solutions, REAL validation of benefits, more data for process modeling
- Affect the way you operate?
 - 3 Yes: REAL value of new measurements, less "hard selling" of statistics!
 - 2 "Not Much": Aware of tools already

Summary

- PAT, Chemometrics have much to contribute to Six Sigma, but..
- Six Sigma has much to contribute to PAT, Chemometrics

Acknowledgements

- Eigenvector Research Colleagues
- DuPont Colleagues
- DuPont Six Sigma