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Abstract

The instrument standardization/calibration transfer problem has 
been addressed by a wide variety of methods. In this work, we 
investigate the ability of Generalized Least Squares (GLS) 
preprocessing methods to deal with artifacts causes by changes in 
spectroscopic instrumentation that would normally require the 
development of completely new calibration models. GLS 
preprocessing works by measuring a number of transfer samples 
on two instruments (or one instrument at separate times). These 
samples can be used to estimate an offset and shift in the 
covariance structure of the data due to instrument differences. The 
method of GLS preprocessing shown recently by Harald Martens 
et. al. can then be used to remove variation in the data which is 
not common to both instruments. Calibration models can then be 
built on data from one of the instruments and used on the other, 
with the GLS preprocessing applied prior to predictions on new 
samples. The GLS method is tested on two data sets from near 
infrared spectroscopy, one being pseudo-gasoline mixtures and 
the other corn measured on three instruments. Comparisons are 
made to other calibration transfer methods including Piece-wise 
Direct Standardization (PDS) and Orthogonal Signal Correction 
(OSC).
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Preprocessing by Generalized Least Squares

Martens et. al. [1] recently showed how the problem of 
modelling undesired or irrelevant but known error 
covariances can be mitigated by multiplying the input 
data by the square root of the known error covariance 
matrix, thereby shrinking the data space in the chosen off-
axis directions. This amounts to making Generalized 
Least Squares (GLS) methods out of Ordinary Least 
Squares (OLS) methods, without having to change the 
OLS method itself.

For instrument standardization applications, the 
difference between instruments can be modelled as an 
offset (additive background) term and a covariance 
defined by the differences between samples measured on 
both instruments. Thus the response of two instruments 
can be made more similar by adjusting for the offset and 
multiplying each of the instrument responses by the 
square root of the estimated difference covariance. This 
has the effect of shrinking directions in the data space 
which are not common to both of the instruments.

Development of the GLS Weighting Matrix

For standardization applications, a weighting matrix W 
will be developed that will be applied to both the standard 
instrument and the instrument to be standardized. Given a 
set of transfer samples X1 and X2 that have been 
measured on two instruments, estimate the offset term as 
the difference between the mean of of the instruments:

xd = x1 - x2

The mean adjusted difference between the samples is then

Xd = X1 - X2 + 1xd

where 1 is a column vector of ones of appropriate 
dimension. The covariance of the difference is then 
estimated in the usual way except that a small value α 
(typically ~1e-6) is added to the diagonal:

Cd = XdTXd/(m-1) + αI

where m is the number of transfer samples. The constant 
α is added to assure that the covariance matrix is of full 
rank, and is the sole adjustable parameter in the method.  
Cd is then decomposed using either a singular value (or 
eigenvector) decomposition as:

USVT = Cd

The eigenvalues (diagonal of S) are then adjusted to have 
a mean of 1 and the square root taken to form the matrix 
of adjusted singular values

Sadj = sqrt(S*n/trace(S))

where n is the number of variables. Finally, the weighting 
matrix is formed by 

W = VSadj+VT

where Sadj+ is the pseudo-inverse of Sadj where care has 
been taken not to invert singular values near zero.

Application of the GLS Weighting and Offset Term

The mean centered standard instrument data can now be 
preprocessed by post multiplying it by the weight W:

X1adj = (X1 - 1x1)W

Calibration of instrument 1 then proceeds as normal, 
using the regression method of choice. Once the 
regression model has been developed, it can be applied to 
the adjusted instrument 2 data, defined as

X2adj = (X2 - 1x1 + 1xd)W

Reference Methods

The GLS method described here is compared with the 
Piece-wise Direct Standardization (PDS) and Orthogonal 
Signal Correction (OSC). The PDS method [2,3] attempts 
to find a transform that essentially predicts the response 
of the standard instrument from the response of second 
instrument and has found wide use in calibration transfer 
problems. 

OSC, often used as a preprocessing method for single 
calibrations, can also be an effective calibration transfer 
method. In this application, the OSC model is developed 
with transfer samples from both instruments and is then 
applied to data from both instruments. The general idea is 
that variance that is unique to each instrument and not 
correlated with the property of interest is removed. 

GLS is perhaps more similar to OSC in that it attempts to 
remove the difference between instruments rather than 
making one instrument look like the other. Like PDS, 
however, GLS does not require property (Y) values, 
which OSC does.

Available Data

A data set consisting of 80 corn samples measured on 
three instruments (M5, MP5 and MP6) was provided by 
Mike Blackburn at Cargill. Reference values for moisture, 
oil, protein and starch were available for all the samples. 
An example of the samples measured on two instruments 
is shown in Figure 1, and the difference between the 
samples is shown in Figure 2.

A second data set consisted of 30 samples of a 5 
component pseudo-gasoline mixture measured on two 
instruments. This data set was developed at AMOCO by 
Ernie Baughman. Spectra of the 30 samples measured on 
each of the instruments in shown in Figure 3. The 
differences between samples are shown in Figure 4.

Selection of Transfer Samples

Transfer samples can be selected in a number of different 
ways. Experience with PDS shows that the best transfers 
are achieved when the samples are selected based upon 
their leverage in the calibration model of the analyte of 
interest. OSC appears to work best when the transfer 
samples are chosen based on their leverage in a PCA 
model of the data. GLS standardization also appears to 
work best when the transfer samples are chosen this way.

Experimental-Corn Data

The original 80 sample data set was split into 60 samples 
for training purposes and 20 samples for testing. PLS 
calibrations were developed for each instrument-analyte 
pair. These calibrations were then applied to the test 
samples on all instruments and errors calculated. The 
results are shown in the first three lines of Table 1 and 
summarized in Figure 6. The average root-mean-square 
error of prediction (RMSEP) for all analytes where the 
model was built on the same instrument as the prediction 
set was 0.1706. When the model was built on a different 
instrument than the prediction set the mean RMSEP was 
1.0052, an approximately 6-fold increase in prediction 
error, as might be expected.

PDS models were developed for each combination of 
instruments and analyte. All of the PDS transforms were 
based on a window width of 11 channels and 1 factor 
PCR submodels. As shown in Table 1, the predictions 
were much improved compared to no standardization, and 
suffered only moderately compared to same model-
instrument predictions, with a mean RMSEP of 0.2289.

GLS models were developed over all instrument pairs. 
Because the transfer sample selection and GLS method 
itself is independent of analyte, separate models for each 
analyte we not required, unlike both PDS and OSC. PLS 
models were then developed individually for each 
instrument pairing and analyte. Typical calibration and 
prediction curves for GLS standardization are shown in 
Figure 3, which is for standardizing MP5 to M5 for the 
moisture data. Results of the GLS standardization are 
shown in Table 1. The average RMSEP of 0.1831 is much 
improved compared to PDS, and nearly equal to the same 
model-instrument predictions of 0.1706. A search for the 
minimum RMSEP over 5-8 latent variables (LVs) was 
also performed. This is a best case scenario, the results 
that would be obtained if the number of LVs chosen was 
optimal in all cases. The result was a mean RMSEP of 
0.1662.

OSC models were developed for each combination of 
instruments and analyte. Due to the difficulty in 
estimating optimal numbers of OSC and PLS factors with 
cross-validation, the optimal cases are given over the 
range of 1-3 OSC components and 3-8 LVs. The mean 
RMSEP was 0.1637. Again, this is a best case scenario. 
The single best combination of OSC and PLS components 
(3 and 5, respectively) is also shown, with a mean 
RMSEP of 0.2328.
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Discussion

All of the standardization methods used here, PDS, GLS 
and OSC, performed well. In the case of the corn data, the 
GLS and OSC methods produced predictions from 
standardized instruments and new samples with accuracy 
very close to that of the original instruments. In the pseudo-
gasoline data, PDS proved best, with GLS close behind.

Given the similarity of the results, issues concerning 
usability should be considered. The GLS preprocessing 
method is particularly easy to use because it has few 
adjustable parameters (only α, to which it is fairly 
insensitive) and requires only one model per instrument, 
since it is independent of analyte. GLS does, however, 
require that new calibration models be built on the standard 
instrument after GLS preprocessing.

The PDS method has several adjustable parameters, the 
most important of which is the window width. This is 
typically easy to set with cross-validation, even in a small 
transfer set (5-10 samples). Other parameters involve the 
development of the individual sub-model, however, in this 
work, the default PLS_Toolbox [6] values for these 
parameters were used. 

Of the methods tested, OSC is probably the most difficult to 
use due to difficulties with establishing the proper number 
of OSC components and PLS components in the subsequent 
models. Once OSC is performed on a data set, cross-
validation results are often unreliable. For this reason, the 
OSC step should be included in the cross-validation, 
however, it is not clear how to best do this in the calibration 
transfer situation. It is for these reason that many 
combinations of OSC and PLS components were tried and 
the best of these reported. In practice, without additional 
test sets, this would not in general be possible. 

Conclusion

GLS appears to be quite competive with PDS and OSC for 
standardization purposes. The method is easy to apply, 
requires only one selection of transfer samples and model 
for each instrument pair, and has few adjustable parameters.

References

[1] H. Martens, M. Høy, B.M. Wise, R. Bro and P.B. 
Brockhoff, “GLS Preprocessing of Multivariate Data,” 
submitted to J. Chemometrics, May 2001.

[2] Y. Wang, D.J. Veltkamp and B.R. Kowalski, 
“Multivariate Instrument Standardization,” Anal. Chem., 
63(23), pps 2750-2756, 1991.

[3] Z. Wang, T. Dean and B.R. Kowalski, “Additive 
Background Correction in Multivariate Instrument 
Standardization,” Anal. Chem., 67(14), pps 249-260, 1995.

[4] S. Wold, H. Antti, F. Lindgren and J. Öhman, 
“Orthogonal Signal Correction of Near-Infrared Spectra,” 
Chemo. and Intell. Lab. Sys., 44, pps 175-185, 1998.

[5] J. Sjöblom, O. Svensson, M. Josefson, H. Kullberg and 
S. Wold, “An Evaluation of Orthogonal Signal Correction 
Applied to Calibration Transfer of Near Infrared Spectra,” 
Chemo. and Intell. Lab. Sys., 44, pps 229-244, 1998.

[6] B.M. Wise and N.B. Gallagher, PLS_Toolbox 2.1 for 
use with MATLAB, Eigenvector Research, Inc., Manson, 
WA USA, 2000.

0.2328

Moisture Oil Protein Starch

Preds M5 MP5 MP6 M5 MP5 MP6 M5 MP5 MP6 M5 MP5 MP6
M5 0.0187 1.4166 1.5123 0.0361 0.1274 0.1568 0.1302 1.2685 1.3241 0.2077 2.0949 1.6601
MP5 1.1693 0.1460 0.3547 0.2751 0.0885 0.1516 1.2719 0.1720 0.2782 3.5674 0.4091 0.6119
MP6 1.0921 0.2849 0.1667 0.3148 0.1926 0.0819 0.8982 0.2403 0.1876 3.1865 0.6754 0.4031

PDS Standardization
M5 0.3951 0.4671 0.0932 0.0755 0.1699 0.1849 0.3362 0.3710
MP5 0.2342 0.1749 0.0876 0.0944 0.1401 0.1880 0.3455 0.3972
MP6 0.2068 0.1601 0.0920 0.1035 0.1553 0.1770 0.4147 0.4290

Prediction Instrument

GLS Standardization, LVs hand selected
M5 0.1592 0.1908 0.0859 0.0952 0.1531 0.1679 0.3314 0.3420
MP5 0.1391 0.1477 0.0479 0.0770 0.1722 0.2110 0.2830 0.4381
MP6 0.1990 0.1521 0.0603 0.0816 0.1687 0.1570 0.1873 0.3473

OSC Standardization, best over all cases, 1-3 OSC, 3-8 LVs
M5 - 0.1630 0.1733 - 0.0816 0.0710 - 0.1433 0.1502 - 0.3002 0.3293
MP5 0.1945 - 0.1580 0.0710 - 0.0739 0.1394 - 0.1988 0.2640 - 0.4259
MP6 0.1466 0.1320 - 0.0607 0.0686 - 0.1568 0.1449 - 0.2253 0.3744 -

GLS Standardization, best over 5-8 LVs
M5
MP5
MP6

- - - -
- - - -

- - - -

- - - -
- - - -

- - - -

1.0052
0.1706

Average

0.2289

0.1831

0.1662

0.1637

OSC Standardization, best single case, 3 OSC 5 LVs
M5 - 0.2218 0.2611 - 0.0835 0.0742 - 0.1588 0.1502 - 0.3250 0.3515
MP5 0.3097 - 0.2176 0.0830 - 0.0834 0.1601 - 0.2388 0.4206 - 0.4506
MP6 0.3299 0.1379 - 0.0826 0.1157 - 0.1684 0.2154 - 0.5119 0.4363 -

- 0.1545 0.1897 - 0.0688 0.0783 - 0.1485 0.1602 - 0.3039 0.3350
0.1248 - 0.1258 0.0479 - 0.0696 0.1448 - 0.1721 0.2405 - 0.3709
0.1902 0.1177 - 0.0590 0.0753 - 0.1358 0.1570 - 0.1873 0.3316 -

Table 1. Summary of Corn Data Standardization Results
(values given are RMSEP)
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Experimental-Pseudo-gasoline Data

The 30 samples in the pseudo-gasoline data were split into 
a calibration set of 20 samples and a test set of 10 samples. 
Care was taken to not leave out unique or high leverage 
samples. Individual PLS models were developed for each 
of the 5 analytes in the data. Because of the small size of 
the data calibration set, the number of LVs in the models 
was fixed at 5 based on the fact that it is a known 5 
component system.

The average RMSEP over all analytes and for both 
instruments for the test set as measured on the same 
instrument was 0.5836. For the unstandardized second 
instruments the RMSEP increased to 12.63. Results are 
compared in Figure 7. 

Individual PDS models were built for each combination of 
instruments and analytes. The PDS models all used a 
window of 3 channels. The mean RMSEP for PDS 
standardization was 0.7955, approximately 36% higher 
than using the same instrument, but drastically improved 
compared to no standardization. 

GLS weighting matrices were developed for each of the 
two instruments. PLS models with 5 factors were found to 
be optimal for the GLS preprocessed data. The mean 
RMSEP using GLS preprocessing was 0.8823.

The optimal OSC combination for prediction of new 
samples was 3 OSC components and 4 PLS LVs. Using 
this combination, the RMSEP was 0.9437.

Figure 6
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